JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 2992-2994 https://publishoa.com ISSN: 1309-3452

Matrices over Non-Commutative Rings as Sums of Fifth Powers

Sagar N. Sankeshwari

School of Science, SVKM's NMIMS Deemed to be University, Sector 33, Kharghar, Navi Mumbai, India **Ranjana H. Gothankar** Humanities and Science, Rizvi College of Engineering,New Rizvi Educational Complex. Off. Carter Road,Bandra(W), Mumbai, India

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.

ABSTRACT

Let R be non-commutative ring with unity and $n \ge p \ge 2$, p prime. S. A. Katre, Deepa Krishnamurthi proved that an $n \times n$ matrix over R is the sum of p^{th} powers if and only if its trace can be written as a sum of p^{th} powers and commutators modulo pR. This extends the results of L. N.Vaserstein (p = 2) and S. A. Katre, Kshipra Wadikar (p = 3). Also S. A. Katre, Deepa Krishnamurthi obtained necessary and sufficient conditions for a matrix over R to be written as a sum of fourth powers when $n \ge 2$. In this paper, we obtain necessary and sufficient conditions for a matrix over R to be written as a sum of fifth powers when $n \ge 3$. Keywords :- Matrices, non-commutative rings, trace, sums of powers, Waring's problem

1. INTRODUCTION

Carlitz showed as a solution to a problem Canadian Mathematical proposed in Bulletin that every 2×2 integer matrix is a sum of at most 3 squares (see [1]). Initial work related to integer matrices and matrices over commutative rings as sums of squares can be found in [3, 8]. Wadikar and Katre [10] proved that every integer matrix is a sum of four cubes. Richman [6] studied Waring's problem for matrices over commutative rings as sums of kth powers.Katre and Garge [4] gave generalized trace condition for a matrix over a commutative ringto be a sum of kth powers.All our rings are associative. By a non-commutative ring, we mean a ring

with unity which is not necessarily commutative.

In this paper, R will be a non-commutative ring, and $M_n(R)$ will denote the ring of n × n matrices over R. For a noncommutative ring R, Vaserstein proved that a matrix of size $n \ge 2$ over R is a sum of squares if and only if itstrace is a sum of squares modulo 2R (see [9]). Recently, Katre and Wadikar proved that amatrix of size $n \ge 2$ over R is a sum of cubes if and only if its trace is a sum of cubes and commutators modulo 3R (see [5]). In the context of Waring's problem S. formatrices, A. Katre, Deepa Krishnamurthi obtained a result for pth powers when $n \ge p \ge 2$, p prime and obtained an analogue of this result for

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 2992-2994 https://publishoa.com ISSN: 1309-3452

fourth powers for $n \ge 2$ (see [7]). For both these results, they used the following general trace condition for a matrix over a non-commutative ring to be a sum of kth powers ([5], Theorem 3.2).Theorem (Katre, Wadikar): Let n, $k\ge 2$ be integers and $A \in M_n(R)$. A is a sum of kth powers of matrices in $M_n(R)$ if and only if trace(A) is a sum of traces of kth powers of matrices in $M_n(R)$.

In this paper, we obtain result for fifth powers for $n \ge 3$. For this result, we use the above general trace condition for a matrix over a non-commutative ring to be a sum of kth powers ([5], Theorem 3.2).

2. NOTATIONS

 E_{ij} : The n × n matrix whose (i, j)th entry is 1 and other entries are 0.

= xy - yx is called the commutator of x and y.

Note that $-C(a_1, a_2, \ldots, a_k) = C(-a_1, a_2, \ldots, a_k)$ is a cyclic sum and -[x, y] = [-x, y] commutator.

3. MAIN RESULT In the case of pth powers, we

required to show in our proof that a cyclic sum $C(a_1, a_2, ..., a_p)$ is in T_p . For this, we showed that $C(a_1, a_2, ..., a_p) = \text{trace}(F^p)$, where F is a $p \times p$ matrix. Because of this our proof required $n \ge p$. We shall see in the next section that for fifth powers we can make use of the five entries in a 3×3 matrix to show that $C(a, b, c, d, e) \in T_5$. This will give us a criterion for $A \in M_n(R)$ to be a sum of fifth powers for $n \ge 3$. The following theorem gives a noncommutative version of Theorem 2.3, 2.6 in [2].

Theorem: Let $n \ge 3$ be an integer and let $T_5=T_{\{5,n\}}$ be set of those elements of R that can be expressed as sums of traces of fifth powers of $n \times n$ matrices over R. For a, b, c, d, $e \in R$, Let C(a, b, c, d, e)= abcde + bcdea + cdeab + deabc + eabcd. Then

(i) For a, b, c, d, $e \in R$, C(a, b, c, d, e) $\in T_5$. Also 5a, $a^5 \in T_5$.

(ii)
$$T_5 = \{\sum_{j=1}^{q} C(a_j, b_j, c_j, d_j, e_j) + \sum_{j=1}^{l} g_j^5/a_j,$$

- $\begin{array}{l} b_{j},\,\,c_{j},\,\,d_{j},\,\,e_{j},g_{j}\,\in R,\,q,\,l\geq 1\,\}.\\ (iii)\,\,T_{5}^{}=\,\{\sum_{j=1}^{q}\,(a\,b_{j}\,-b\,a_{j}\,)+\sum_{j=1}^{l}\,c_{j}^{5}+\,5r\,\,/\,\,a_{j},\\ b_{j},\,c_{j},\,r\in R,\,q,\,l\geq 1\,\}. \end{array}$
- (iv) A matrix $A \in M_n(R)$ is a sum of fifth powers if and only if trace(A) is a sum of fifth powers and commutators modulo 5R.
- (v) A matrix A in $M_n(R)$ is a sum of fifth powers if and only if trace(A) = $x_0^{5+} 5x_1^{5+}$ a sum of commutators where $x_0, x_1 \in R$.

Proof:

(i) For the 3 \times 3 matrix E'_{ij} , and the zero matrix O_{n-3} of order n-3, let a, b, c, d, e $\in \mathbb{R}$,

We have, trace $\sum_{i=1}^{5} N^{5} = [C(a, b, c, d, e) + a^{5} + d^{5} + (bceaa + aabce + eaabc + ceaab + abcea) + (bcdde + ebcdd + ddebc + cddeb + debcd)] + [a^{5} - bceaa - aabce - eaabc - ceaab - abcea] + [d^{5} - bceaa + a$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 2992-2994 https://publishoa.com ISSN: 1309-3452 bcdde - ebcdd - ddebc - cddeb - debcd] - $2a^{5} - 2d^{5} = C(a, b, c, d, e).$ Hence, $C(a, b, c, d, e) \in T_{5}$. Also C(a, 1, 1, 1)

1, 1) = 5a, hence $5a \in T_5$. Alsoa⁵= trace(aE₁₁⁵) $\in T_5$.

(ii) From (i), $C(a_j, b_j, c_j, d_j, e_j) \in T_5$, also $g_j^5 \in T_5$. Thus, every element of R.H.S. of (ii) $\in T_5$.

Conversely, for $A \in M_n(R)$, trace of A^5 is sum of fifth powers of diagonal entries and entries

of the type C(a, b, c, d, e), so $T_5 \subseteq$ R.H.S of (ii).

(iii) By (i), every term in the elements of R.H.S. of (iii) \in T₅, so R.H.S. of (iii) \subseteq T₅and

conversely by (ii), $T_5 \subseteq R.H.S.$ of (iii).

- (iv) A matrix $A \in M_n(R)$ is a sum of fifth powers if and only if trace of A is a sum oftraces of fifth powers of matrices in $M_n(R)$ if and only if, by (iii), trace(A) is a sum of fith powers and commutators modulo 5R.
- (v) By (iv), A in $M_n(R)$ is sum of fifth powers if and only if trace(A) is a sumof fifth powers and sum of commutators modulo 5R. Now Consider, $a^5 + b^5 = (a+b)^5 - (a^4b^1a^0 + b^2)^2 + (a^4b^$ $a^{3}b^{1}a^{1} + a^{2}b^{1}a^{2} + a^{1}b^{1}a^{3} + a^{0}b^{1}a^{4})$ - $(b^{4}a^{1}b^{0})$ $b^{3}a^{1}b^{1} + b^{2}a^{1}b^{2} + b^{1}a^{1}b^{3} + b^{0}a^{1}b^{4}) - (b^{3}a^{2}b^{0})$ $+ b^{2}a^{2}b^{1} + b^{1}a^{2}b^{2} + b^{0}a^{2}b^{3} + b^{4}a^{2}b^{4}) (a^{3}b^{2}a^{0} +$ $a^{2}b^{2}a^{1} + a^{1}b^{2}a^{2} + a^{0}b^{2}a^{3} + a^{4}b^{2}a^{4}$ $= (a + b)^{5} - (a^{4}b^{1}a^{0} + a^{0}b^{1}a^{4} + a^{3}b^{1}a^{1} + a^{1}b^{1}a^{3}$ $+ a^{2}b^{1}a^{2}) - (b^{4}a^{1}b^{0} + b^{0}a^{1}b^{4} + b^{3}a^{1}b^{1} + b^{3}a^{1}b^{1})$ $\mathbf{h}^{1}\mathbf{a}^{1}\mathbf{h}^{3}$ $+b^{2}a^{1}b^{2}$)- $(b^{3}a^{2}b^{0}+b^{0}a^{2}b^{3}+b^{2}a^{2}b^{1}+b^{1}a^{2}b^{2}$ $+b^4a^2b^4)$ - $(a^3b^2a^0 + a^0b^2a^3 + a^2b^2a^1 + a^1b^2a^2)$ $+a^{4}b^{2}a^{4})$

 $= (a + b)^5$ - cyclic sums

Since every cyclic sum is sum of commutators modulo 5R, we get $a^5 + b^5 = (a + b)^5 +$ sum of commutators modulo 5R. Note: T₅ is independent of n for n \geq 3.

REFERENCES

- 1. Carlitz L. Solution to problem 140. Canad Math Bull. 1968; 11: 165-169.
- 2. Garge AS. Matrices over commutative rings as sums of fifth and seventh powers of matrices.Linear Multilinear Algebra. 2019; 67(12):10
- Griffin M, Krusemeyer M. Matrices as sums of squares. Linear Multilinear Algebra.1977; 5: 33-44.
- 4. Katre SA, Garge AS. Matrices over commutative rings as sums of kth powers. Proc Amer Math Soc. 2013; 141: 103-113.
- 5. Katre SA, Wadikar KG. Matrices over noncommutative rings as sums of kth powers. Linear Multilinear Algebra. 2019; 67(12): 9.
- Richman DR. The Waring's problem for matrices. Linear Multilinear Algebra. 1987; 22(2):171-192.
- S. A. Katre and Deepa Krishnamurthi. Matrices over non-commutative rings as sums of powers. Linear Multilinear Algebra. 2020; 1-6.
- 8. Vaserstein LN. Every integral matrix is the sum of three squares. Linear Multilinear Algebra.1986; 20(1):1-4.
- Vaserstein LN. On the sum of powers of matrices. Linear Multilinear Algebra. 1987; 21(3): 261-270.
- Wadikar Kshipra G, Katre SA. Matrices over commutative ring with unity as sums of cubes.Proceeding of International Conference on Emerging Trends in Mathematical and Computational Applications; 2010, Dec. 16–18; Sivakasi, India: Allied Publishers; 2010, p. 8-12.