Matrices over Non-Commutative Rings as Sums of Fifth Powers

Sagar N. Sankeshwari
School of Science, SVKM's NMIMS Deemed to be University, Sector 33, Kharghar, Navi Mumbai, India

Ranjana H. Gothankar

Humanities and Science,
Rizvi College of Engineering,New Rizvi Educational
Complex. Off. Carter Road,Bandra(W), Mumbai, India

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.

Abstract

Let R be non-commutative ring with unity and $\mathrm{n} \geq \mathrm{p} \geq 2$, p prime. S. A. Katre, Deepa Krishnamurthi proved that an $n \times n$ matrix over R is the sum of $p^{\text {th }}$ powers if and only if its trace can be written as a sum of $\mathrm{p}^{\text {th }}$ powers and commutators modulo pR . This extends the results of L. N.Vaserstein $(p=2)$ and S. A. Katre, Kshipra Wadikar $(p=3)$. Also S. A. Katre, Deepa Krishnamurthi obtained necessary and sufficient conditions for a matrix over R to be written as a sum of fourth powers when $\mathrm{n} \geq 2$. In this paper, we obtain necessary and sufficient conditions for a matrix over R to be written as a sum of fifth powers when $\mathrm{n} \geq 3$.

Keywords :- Matrices, non-commutative rings, trace, sums of powers, Waring's problem

1. INTRODUCTION

Carlitz showed as a solution to a problem proposed in Canadian Mathematical Bulletin that every 2×2 integer matrix is a sum of at most 3 squares (see [1]). Initial work related to integer matrices and matrices over commutative rings as sums of squares can be found in [3, 8]. Wadikar and Katre [10] proved that every integer matrix is a sum of four cubes. Richman [6] studied Waring's problem for matrices over commutative rings as sums of kth powers.Katre and Garge [4] gave generalized trace condition for a matrix over a commutative ringto be a sum of kth powers.All our rings are associative. By a non-commutative ring, we mean a ring
with unity which is not necessarily commutative.
In this paper, R will be a non-commutative ring, and $\mathrm{M}_{\mathrm{n}}(\mathrm{R})$ will denote the ring of n $\times n$ matrices over R. For a noncommutative ring R, Vaserstein proved that a matrix of size $n \geq 2$ over R is a sum of squares if and only if itstrace is a sum of squares modulo 2R (see [9]). Recently, Katre and Wadikar proved that amatrix of size $n \geq 2$ over R is a sum of cubes if and only if its trace is a sum of cubes andcommutators modulo 3R (see [5]). In the context of Waring's problem formatrices, S. A. Katre, Deepa Krishnamurthi obtained a result for $\mathrm{p}^{\text {th }}$ powers when $n \geq p \geq 2, p$ prime and obtained an analogue of this result for

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 2992-2994
https://publishoa.com
ISSN: 1309-3452
fourth powers for $n \geq 2$ (see [7]). For both these results, they used the following general trace condition for a matrix over a non-commutative ring to be a sum of kth powers ([5], Theorem 3.2).Theorem (Katre, Wadikar): Let $\mathrm{n}, \mathrm{k} \geq 2$ be integers and $A \in M_{n}(R)$. A is a sum of kth powers of matrices in $M_{n}(R)$ if and only if trace (A) is a sum of traces of kth powers ofmatrices in $M_{n}(R)$.

In this paper, we obtain result for fifth powers for $\mathrm{n} \geq 3$. For this result, we use the above general trace condition for a matrix over a non-commutative ring to be a sum of kth powers ([5], Theorem 3.2).

2. NOTATIONS

E_{ij} : The $\mathrm{n} \times \mathrm{n}$ matrix whose $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry is 1 and other entries are 0 .
$\mathrm{E}_{\mathrm{ij}}^{\prime}$: The $\mathrm{p} \times \mathrm{p}$ matrix whose $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry is 1 and other entries are 0 .
$\mathrm{C}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=\underset{12}{\mathrm{a}_{1}} \mathrm{a}_{2} \cdots \mathrm{a}_{\mathrm{k}}+\mathrm{a}_{2} \cdots \mathrm{a}_{\mathrm{k} 1} \mathrm{a}_{1}+$ $\cdots+a_{k} a_{1} a_{2} \cdots a_{k-1}$ where $a_{1}, a_{2}, \ldots, a_{k} \in R$, is called a cyclic sum of length k and $[x, y$] $=x y-y x$ is called the commutator of x and y.

Note that $-C\left(a_{1}, a_{2}, \ldots, a_{k}\right)=C\left(-a_{1}, a_{2}, \ldots\right.$, a_{k}) is a cyclic sum and $-[\mathrm{x}, \mathrm{y}]=[-\mathrm{x}, \mathrm{y}]$ commutator.

3. MAIN RESULT n the of $\mathrm{p}^{\text {th }}$ powers, we

 required to show in our proof that a cyclic sum $C\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ is in T_{p}. For this, we showed that $\mathrm{C}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{p}}\right)=\operatorname{trace}\left(\mathrm{F}^{\mathrm{p}}\right)$, where F is a $\mathrm{p} \times \mathrm{p}$ matrix. Because of this our proof required $n \geq p$. We shall see in the next section that for fifth powers we can make use of the five entries in a 3×3 matrix to show that $C(a, b, c, d, e) \in T_{5}$. This will give us a criterion for $A \in M_{n}(R)$ to be a sum of fifth powers for $\mathrm{n} \geq 3$.The following theorem gives a noncommutative version of Theorem 2.3, 2.6 in [2].

Theorem: Let $\mathrm{n} \geq 3$ be an integer and let $\mathrm{T}_{5}=\mathrm{T}_{\{5, n\}}$ be set of those elements of R that can be expressed as sums of traces of fifth powers of $n \times n$ matrices over R. For a, b, $c, d, e \in R$, Let $C(a, b, c, d, e)=$ abcde + $b c d e a+c d e a b+$ deabc + eabcd. Then
(i) For a, b, c, d, e $\in R, C(a, b, c, d, e) \in T_{5}$. Also $5 \mathrm{a}, \mathrm{a}^{5} \in \mathrm{~T}_{5}$.
(ii) $\mathrm{T}_{5}=\left\{\sum_{j=1}^{\mathrm{q}} \mathrm{C}\left(\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{l}} \mathrm{g}_{\mathrm{j}}^{5} / \mathrm{a}_{\mathrm{j}}\right.$, $\left.\mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{g}_{\mathrm{j}} \in \mathrm{R}, \mathrm{q}, \mathrm{l} \geq 1\right\}$.
(iii) $\mathrm{T}_{5}=\left\{\sum_{\mathrm{j}=1}^{\mathrm{q}}\left(\mathrm{a}_{\mathrm{j}} \mathrm{b}_{\mathrm{j}}-\mathrm{b}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{l}} \mathrm{c}_{\mathrm{j}}^{5}+5 \mathrm{r} / \mathrm{a}_{\mathrm{j}}\right.$, $\left.b_{j}, c_{j}, r \in R, q, l \geq 1\right\}$.
(iv) A matrix $A \in M_{n}(R)$ is a sum of fifth powers if and only if trace (A) is a sum of fifth powers and commutators modulo 5 R .
(v) A matrix A in $M_{n}(R)$ is a sum of fifth powers if and only if $\operatorname{trace}(\mathrm{A})=\mathrm{x}_{0}^{5}+5 \mathrm{x}_{1}^{5}+$ a sum of commutators where $\mathrm{x}_{0}, \mathrm{x}_{1} \in \mathrm{R}$.

Proof:

(i) For the 3×3 matrix $\mathrm{E}_{\mathrm{ij}}^{\prime}$, and the zero matrix $\mathrm{O}_{\mathrm{n}-3}$ of order $\mathrm{n}-3$, let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e} \in \mathrm{R}$,

We have, trace $\sum^{5}{ }_{i=1} \quad \mathrm{~N}^{5}=[\mathrm{C}(\mathrm{a}, \mathrm{b}$, $c, d, e)+a^{5}+d^{5}+(b c e a a+$ aabce + eaabc + ceaab + abcea $)+(b c d d e+$ ebcdd + ddebc + cddeb + debcd $)]+\left[a^{5}-\right.$ bceaa aabce - eaabc - ceaab - abcea] $+\left[\mathrm{d}^{5}-\right.$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 2992-2994
https://publishoa.com
ISSN: 1309-3452
bcdde - ebcdd - ddebc - cddeb - debcd] $2 a^{5}-2 d^{5}=C(a, b, c, d, e)$.
Hence, $C(a, b, c, d, e) \in T_{5}$. Also $C(a, 1,1$, $1,1)=5 a$, hence $5 a \in \mathrm{~T}_{5}$. Alsoa ${ }^{5}=$ $\operatorname{trace}\left(\mathrm{aE}_{11}^{5}\right) \in \mathrm{T}_{5}$.
(ii) From (i), $C\left(a_{j}, b_{j}, c_{j}, d_{j}, e_{j}\right) \in T_{5}$, also $\mathrm{g}_{\mathrm{j}} \in \mathrm{T}_{5}$. Thus, every element of R.H.S. of (ii) $\in \mathrm{T}_{5}$.

Conversely, for $A \in M_{n}(R)$, trace of A^{5} is sum of fifth powers of diagonal entries and entries
of the type $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$, so $\mathrm{T}_{5} \subseteq$ R.H.S of (ii).
(iii) By (i), every term in the elements of R.H.S. of (iii) $\in T_{5}$, so R.H.S. of (iii) \subseteq $\mathrm{T}_{\text {5 and }}$
conversely by (ii), $\mathrm{T}_{5} \subseteq$ R.H.S. of (iii).
(iv) A matrix $A \in M_{n}(R)$ is a sum of fifth powers if and only if trace of A is a sum oftraces of fifth powers of matrices in $M_{n}(R)$ if and only if, by (iii), trace (A) is a sum of fith powers andcommutators modulo 5R.
(v) By (iv), A in $M_{n}(R)$ is sum of fifth powers if and only if trace(A) is a sumof fifth powers
and sum of commutators modulo 5R.
Now Consider, $a^{5}+b^{5}=(a+b)^{5}-\left(a^{4} b^{1} a^{0}+\right.$ $\left.a^{3} b^{1} a^{1}+a^{2} b^{1} a^{2}+a^{1} b^{1} a^{3}+a^{0} b^{1} a^{4}\right)-\left(b^{4} a^{1} b^{0}\right.$ $+$
$\left.b^{3} a^{1} b^{1}+b^{2} a^{1} b^{2}+b^{1} a^{1} b^{3}+b^{0} a^{1} b^{4}\right)-\left(b^{3} a^{2} b^{0}\right.$
$\left.+b^{2} a^{2} b^{1}+b^{1} a^{2} b^{2}+b^{0} a^{2} b^{3}+b^{4} a^{2} b^{4}\right)-$

$$
\left(a^{3} b^{2} a^{0}+\right.
$$

$\left.a^{2} b^{2} a^{1}+a^{1} b^{2} a^{2}+a^{0} b^{2} a^{3}+a^{4} b^{2} a^{4}\right)$
$=(a+b)^{5}-\left(a^{4} b^{1} a^{0}+a^{0} b^{1} a^{4}+a^{3} b^{1} a^{1}+a^{1} b^{1} a^{3}\right.$
$\left.+a^{2} b^{1} a^{2}\right)-\left(b^{4} a^{1} b^{0}+b^{0} a^{1} b^{4}+b^{3} a^{1} b^{1}+\right.$ $b^{1} a^{1} b^{3}$
$\left.+b^{2} a^{1} b^{2}\right)-\left(b^{3} a^{2} b^{0}+b^{0} a^{2} b^{3}+b^{2} a^{2} b^{1}+b^{1} a^{2} b^{2}\right.$
$\left.+b^{4} a^{2} b^{4}\right)-\left(a^{3} b^{2} a^{0}+a^{0} b^{2} a^{3}+a^{2} b^{2} a^{1}+a^{1} b^{2} a^{2}\right.$ $\left.+a^{4} b^{2} a^{4}\right)$
$=(a+b)^{5}$ - cyclic sums
Since every cyclic sum is sum of commutators modulo $5 R$, we get $a^{5}+b^{5}=$ $(a+b)^{5}+$ sum of commutators modulo 5R.
Note: T_{5} is independent of n for $\mathrm{n} \geq 3$.

REFERENCES

1. Carlitz L. Solution to problem 140. Canad Math Bull. 1968; 11: 165-169.
2. Garge AS. Matrices over commutative rings as sums of fifth and seventh powers of matrices.Linear Multilinear Algebra. 2019; 67(12):10
3. Griffin M, Krusemeyer M. Matrices as sums of squares. Linear Multilinear Algebra.1977; 5: 33-44.
4. Katre SA, Garge AS. Matrices over commutative rings as sums of kth powers. Proc Amer Math Soc. 2013; 141: 103-113.
5. Katre SA, Wadikar KG. Matrices over noncommutative rings as sums of kth powers. Linear Multilinear Algebra. 2019; 67(12): 9.
6. Richman DR. The Waring's problem for matrices. Linear Multilinear Algebra. 1987; 22(2):171-192.
7. S. A. Katre and Deepa Krishnamurthi. Matrices over non-commutative rings as sums of powers. Linear Multilinear Algebra. 2020; 1-6.
8. Vaserstein LN. Every integral matrix is the sum of three squares. Linear Multilinear Algebra.1986; 20(1):1-4.
9. Vaserstein LN. On the sum of powers of matrices. Linear Multilinear Algebra. 1987; 21(3): 261-270.
10. Wadikar Kshipra G, Katre SA. Matrices over commutative ring with unity as sums of cubes.Proceeding of International Conference on Emerging Trends in Mathematical and Computational Applications; 2010, Dec. 16-18; Sivakasi, India: Allied Publishers; 2010, p. 8-12.
