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ABSTRACT 

Let R be non-commutative ring with unity and n ≥ p ≥2, p prime. S. A. Katre, Deepa 

Krishnamurthi proved that an n ×n matrix over R is the sum of p
th

 powers if and only if its 

trace can be written as a sum of p
th

 powers and commutators modulo pR. This extends the 

results of L. N.Vaserstein (p = 2) and S. A. Katre, Kshipra Wadikar (p = 3). Also S. A. Katre, 

Deepa Krishnamurthi obtained necessary and sufficient conditions for a matrix over R to be 

written as a sum of fourth powers when n ≥2. In this paper, we obtain necessary and 

sufficient conditions for a matrix over R to be written as a sum of fifth powers when n ≥3. 

Keywords :- Matrices, non-commutative rings, trace, sums of powers, Waring’s problem 
 

1. INTRODUCTION 

Carlitz showed as a solution to a problem 

proposed in Canadian Mathematical 

Bulletin that every 2 × 2 integer matrix is 

a sum of at most 3 squares (see [1]). Initial 

work related to integer matrices and 

matrices over commutative rings as sums 

of squares can be found in [3, 8]. Wadikar 

and Katre [10] proved that every integer 

matrix is a sum of four cubes. Richman [6] 

studied Waring’s problem for matrices 

over commutative rings as sums of kth 

powers.Katre and Garge [4] gave 

generalized trace condition for a matrix 

over a commutative ringto be a sum of kth 

powers.All our rings are associative. By a 

non-commutative ring, we mean a ring 

with unity which is not necessarily 

commutative. 

In this paper, R will be a non-commutative 

ring, and Mn(R) will denote the ring of n 

× n matrices over R. For a non- 

commutative ring R,Vaserstein proved that 

a matrix of size n≥2 over R is a sum of 

squares if and only if itstrace is a sum of 

squares modulo 2R (see [9]). Recently, 

Katre and Wadikar proved that amatrix of 

size n ≥2 over R is a sum of cubes if and 

only if its trace is a sum of cubes 

andcommutators modulo 3R (see [5]). In 

the context of Waring’s problem 

formatrices, S. A. Katre, Deepa 

Krishnamurthi obtained a result for p
th
 

powers when n ≥p ≥2, p prime and 

obtained an analogue of this result for 
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fourth powers for n≥2(see [7]). For both 

these results, they used the following 

general trace condition for a matrix over a 

non-commutative ring to be a sum of kth 

powers ([5], Theorem 3.2).Theorem 

(Katre, Wadikar): Let n, k≥2 be integers 

and A ∈ Mn(R). A is a sum of kth powers 

of matrices in Mn(R) if and only if trace(A) 

is a sum of traces of kth powers ofmatrices 

in Mn(R). 

In this paper, we obtain result for 

fifth powers for n ≥3. For this result, we 

use the above general trace condition for a 

The following theorem gives a non- 

commutative version of Theorem 2.3, 2.6 

in [2]. 

 
Theorem: Let n ≥3 be an integer and let 

T5=T{5,n} be set of those elements of R that 

can be expressed as sums of traces of fifth 

powers of n × n matrices over R. For a, b, 

c, d, e ∈ R, Let C(a, b, c, d, e)= abcde + 

bcdea + cdeab + deabc + eabcd. Then 

(i) For a, b, c, d, e ∈ R, C(a, b, c, d, e) ∈ T5. 

Also 5a, a
5∈ T5. 

(ii)T =   {∑q C(a , b , c , d , e ) +   ∑l g5/a , 
5 j=1 j j j j j j=1    j j 

matrix over a non-commutative ring to be 
a sum of kth powers ([5], Theorem 3.2). bj, cj, dj, ej,gj ∈ R, q, l ≥1}. 

(iii) T = {∑q   (a b − b a ) + ∑l c5+ 5r / a , 
5 j=1 j   j j   j j=1    j j 

2. NOTATIONS 

Eij : The n × n matrix whose (i, j)
th

 entry is 

1 and other entries are 0. 

E′ : The p × p matrix whose (i, j)
th

 entry is 

1 and other entries are 0. 
C(a , a , . . . , a ) = a a ⋯ a + a ⋯ a a + 

bj, cj, r ∈ R, q, l ≥1}. 

(iv) A matrix A ∈Mn(R) is a sum of fifth 

powers if and only if trace(A) is a sum of 

fifth powers and commutators modulo 5R. 

(v) A matrix A in Mn(R) is a sum of fifth 
powers if and only if trace(A) = x5+ 5x5+ 

1 2 k 1 2 k 2 k 1 0 1 

··· + aka1a2 ⋯ ak-1where a1, a2, . . . , ak∈ R, 

is called a cyclic sum of length k and [x, y] 

= xy - yx is called the commutator of x and 

y. 

Note that -C(a1, a2, . . . , ak) = C(-a1, a2, . . . 

, ak) is a cyclic sum and -[x, y] = [-x, y] 

a sum of commutators wherex0,x1 ∈R. 

 
Proof: 

(i) For the 3 × 3 matrix E′ , and the zero 

matrixOn−3of order n-3, let a, b, c, d, e ∈R, 

commutator. a 0 b a 0 b 
N1= [e d 0], N2 = [−e 0 0], N3 = 

3. MAIN RESULT 
In the case of p

th
 powers, we 

0 c 0 
0 0 b 

0 c 0 
−a 0 0 

[−e d 0], N4 = [ 0 −a 0], 
required to show in our proof that a cyclic 

sum C(a1, a2, . . . , ap) is in Tp. For this, we 

showed that C(a1, a2, . . . , ap) = trace(F
p
), 

where F is a p × p matrix. Because of this 

0 c 0 
−d 0 0 

N5= [ 0 −d 0] 
0 0 0 

0 0 0 

our proof required n ≥ p. We shall see in 

the next section that for fifth powers we 

can make use of the five entries in a 3 × 3 

matrix to show that C(a, b, c, d, e) ∈ T5. 

This will give us a criterion for A ∈ Mn(R) 

to be a sum of fifth powers for n ≥ 3. 

We have, trace ∑5      N5= [C(a, b, 

c, d, e) + a
5
 + d

5
 + (bceaa + aabce + eaabc 

+ ceaab + abcea) + (bcdde + ebcdd + 

ddebc + cddeb + debcd)] + [a
5
 - bceaa - 

aabce - eaabc - ceaab - abcea] + [d
5
 - 
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bcdde - ebcdd - ddebc - cddeb - debcd] - 

2a
5
 - 2d

5
 = C(a, b, c, d, e). 

Hence, C(a, b, c, d, e) ∈ T5. Also C(a, 1, 1, 

1, 1) = 5a, hence 5a ∈ T5. Alsoa
5
= 

trace(aE5 )∈ T5. 

(ii) From (i), C(aj, bj, cj, dj, ej) ∈ T5, also 

g5 ∈ T5. Thus, every element of R.H.S. of 

(ii) ∈ T5. 

Conversely,for A ∈ Mn(R), trace of A
5
 is 

sum of fifth powers of diagonal entries and 

entries 

of the type C(a, b, c, d, e), so T5 ⊆ 

R.H.S of (ii). 

 
(iii) By (i), every term in the elements of 

R.H.S. of (iii) ∈ T5, so R.H.S. of (iii) ⊆ 

T5and 

conversely by (ii), T5 ⊆R.H.S. of (iii). 

 
(iv) A matrix A ∈Mn(R) is a sum of fifth 

powers if and only if trace of A is a sum 

oftraces of fifth powers of matrices in 

Mn(R) if and only if, by (iii), trace(A) is a 

sum of fith powers andcommutators 

modulo 5R. 

(v)  By (iv), A in Mn(R) is sum of fifth powers 

if and only if trace(A) is a sumof fifth 

powers 

and sum of commutators modulo 5R. 

Now Consider, a
5
 + b

5
 = (a+ b)

5
 - (a

4
b

1
a

0
 + 

a
3
b

1
a

1
 + a

2
b

1
a

2
 + a

1
b

1
a

3
 + a

0
b

1
a

4
) - (b

4
a

1
b

0
 

+ 

b
3
a

1
b

1
 + b

2
a

1
b

2
+ b

1
a

1
b

3
 + b

0
a

1
b

4
) - (b

3
a

2
b

0
 

+ b
2
a

2
b

1
 + b

1
a

2
b

2
 + b

0
a

2
b

3
 + b

4
a

2
b

4
) - 

(a
3
b

2
a

0
 + 

a
2
b

2
a

1
 + a

1
b

2
a

2
 + a

0
b

2
a

3
 + a

4
b

2
a

4
) 

= (a + b)
5
- (a

4
b

1
a

0
+ a

0
b

1
a

4
 + a

3
b

1
a

1
 + a

1
b

1
a

3
 

+ a
2
b

1
a

2
) - (b

4
a

1
b

0
 + b

0
a

1
b

4
 + b

3
a

1
b

1
+ 

b1a1b3 

+ b
2
a

1
b

2
)-(b

3
a

2
b

0
 + b

0
a

2
b

3
 + b

2
a

2
b

1
 + b

1
a

2
b

2
 

+ b
4
a

2
b

4
) - (a

3
b

2
a

0
 + a

0
b

2
a

3
+ a

2
b

2
a

1
 + a

1
b

2
a

2
 

+ a
4
b

2
a

4
) 

= (a + b)
5
- cyclic sums 

Since every cyclic sum is sum of 

commutators modulo 5R, we get a
5
 + b

5
 = 

(a + b)
5
+ sum of commutators modulo 5R. 

Note: T5 is independent of n for n ≥3. 
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