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Abstract 

The idea of the research is to fortify the path coefficients in the structural equations model through the use of the robust 

correlation coefficients. Three methods of the robust correlation were compared in addition to the Pearson correlation. 

A comparison has been made between the proposed method and the traditional method through a causal model 

proposed by the researchers. Several simulation scenarios have been applied in the experimental aspect. In order to test 

the efficiency of the generated models, samples of different sizes (n=20,100,1000) were used. Furthermore, the 

explanatory variables in the causal model were contaminated with different contamination percentages. Path parameters 

were estimated using the four-fold correlation matrix and the results were compared through some statistical criteria. 

The study concluded that the pathway coefficients method using the Robust Correlation has given the best results 

compared to the traditional methods. 

Keyword: Robust correlation, outlier, path analysis, structural equation.  

Introduction 

Structural Equation Modeling (SEM) is sometimes used in pathway analyzes and Confirmatory Factor Analyses 

(CFA). It investigates causal relationships between one or more independent variables (IVs). It can be intermittent or 

continuous. One or more dependent variables (DVs), which can also be discontinuous or continuous. According to 

some studies, the application of SEM effectively contributes to solving complex relationships in variables in studies of 

social sciences, management, nature and other sciences. It is called modeling and estimating parameter values on the 

hypotheses of the SEM test by causal inference. In such cases, the results are considered accurate if the verification of 

the data revealed the problems available in it for the purpose of choosing the appropriate method for estimating the path 

parameters (Yuan et al., 2000). 

 

Structural Equations Modeling               

Structural equation modeling is a methodology or method in research used to estimate, analyze and test models that 

describe and determine the relationships between variables. In other words, it is a comprehensive statistical model for 

testing hypotheses to identify the relationship between the observed variables and the independent variables. They 

describe the representation, estimation, and testing of a network of linear relationships between variables to test 

hypothesis patterns of direct and indirect relationships between variables. Watching and not watching (Suhr, 2006). 

The structural equation model is defined as a pattern or hypothetical model of direct and indirect relationships between 

a set of latent variables. Hence, it can represent a complete path model for a relationship between a set of variables that 

can be described in a Path Diagram that shows the characteristics of the relationship between this set of variables, which 

is an extension The General Linear Model (Al-Mahdi, 2013). Furthermore, structural equation modeling is a method for 
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analyzing multiple types of models, such as models of multiple regression analysis, path analysis, as well as 

confirmatory factor analysis, which are special cases of this modeling.  

Stages of Structural Equation  

The structural equation modeling technique proposes a methodology that includes several sequential steps. It explains 

the results for each stage and the next stage that precedes it as clarified by (Shook, et al., 2004). There are several 

important factors to identify the structural models, which are as follows: 

1. Data Characteristics  

2. Reliability and Validity  

3. Evaluating Model Fit 

4. Model Respecification   

5. Equivalent Models Reporting   

Path Analysis                   

The path analysis method is one of the efficient statistical methods in analyzing the data. It enables the researcher to 

analyze and clarify the possible causal relationships for a group of factors and indicate their direct, indirect and total 

effects on the phenomenon to be studied. Its importance is highlighted by the ability to study the effects of several 

factors on a particular phenomenon indirectly through several explanatory factors. It is different from the regression 

analysis method, which is based on direct relationships. Path analysis is a statistical method which is firstly presented 

by the geneticist Sewall Wright in 1921 through its use in studying the degree of relationship between relatives in 

studying the genetic behavior of many genetic traits (Olobatuyi, 2006). 

This method has spread in most research and in various fields, including social sciences research by Duncan 

(Vasconcelos et al., 1998). He showed in 1966 the relationship between path analysis and Structural Equation Models 

SEM and set some examples as an aid to an analysis of the path in social research. Moreover, in 1975 the scientist 

Duncan included all aspects of the structural equations in path analysis and the path analysis method was used 

extensively in the high environment in 1970 (Olobatuyi, 2006). 

Concept of Path Analysis                           

Path analysis is also known as causal modeling (Jackson et al., 2005). It is also considered a statistical method based on 

regression and multiple correlation analysis and can be used to establish the probability of the relationship between 

many variables and examine them in a system of linear equations, whether the variables are continuous or discontinuous 

(Hadiya, 2011). Moreover, the path analysis method is an extension of multiple regression analysis and is usually used 

in the study of causal models on the basis that the researcher visualizes the pattern of the relationship between the 

relevant variables (Davidson, 2012). 

 Path Analysis Assumption  

The path analysis method can be used if some of the following hypotheses are fulfilled (Nair, 2007): 

1. The relationship between the variables is linear. 

2. The relationship between the variables is an association relationship (there is no interaction between the variables). 

3. The relationship between variables is causal. 

4. There should not be a correlation between the residual variables with each other. 

5. There should not be a correlation between the residual variables and the other variables, i.e., the independent and 

dependent variables. 

6. The relationship between the variables is one-way causation and there is an inverse causal relationship in the 

model. 

7. The measured independent variables are free from any measurement errors. 
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8. Assuming that the model is free from assignment errors, that is, the model contains the theoretically possible 

variables to explain all the variance of the dependent variables. 

 

Outliers                                  

 

They are those observations that are illogical in the data set. They show a large and clear deviation from the rest of the 

data in the selected sample group in which that observation was found, and it seems illogical when compared to the rest 

of the data set. The stray values were known by some researchers by the same method. It seems inconsistent 

observations with the rest of the observations of the sample under study (Keller & Brian, 2000). 

The first steps that the researcher takes in a particular study is the process of examining the data for the phenomenon 

under study in order to notice the presence of inconsistent values with the rest of the observations that affect the 

realization of the imposition of a normal distribution. The next step is the process of purifying the data from these 

values or observations that were called stray values before entering into any statistical analysis depends on the normal 

distribution.  The statistical analysis depends mainly on the data and its purification from any abnormal, stray or 

inconsistent observations. It constitutes a clear deviation from the rest of the observations and thus distorts the estimated 

model towards it (Freeman, 1980). 

Outliers Detection                                      

The detection of outlier values is applied to regression models and experiments designed; they were tested in 

multivariate data and by different methods, either through partial detection or total detection of observations. There are 

two methods used for detecting and identifying outlier values including univariate methods. These methods test each 

variable separately. The second is multivariate methods that take into account the correlations between the variables in 

the same data set and highlight the outlier values in both methods because they are far from the observation values of 

the problem under study (Dan & Ijeoma, 2013). There are many methods for detecting outlier values, including the 

standard deviation method, the standard score, the modified-standard score, the Tukey's Method (Boxplot), the adjusted 

boxplot, the median method and others (Al-Talib & Shaker, 2018). 

Robust Correlation 

The correlation coefficient is one of the most important statistical measures that shows the degree of relationship 

between two random variables. Its value ranges between (+1, -1). Likely, it is not consistent with the rest of the data in 

any phenomenon. 

Devlin et al. (1975) suggested some graphical methods for diagnosing the observations that could affect the value of 

the correlation coefficient. More studies about the correlation coefficient were followed. Shevlyakov (1997) relied on 

simulation experiments to compare the known estimates of the correlation coefficient and some of the fortified 

estimates that depend on dealing with the polluted binary normal distribution, which was called the Median 

Correlation Coefficient instead of using the arithmetic mean. It can be calculated using the following formula: 

 

 rα(ψ) =
∑ ψ(xi − x̂)ψ(yi − ŷ)α

(∑ ψ2(xi − x̂)ψ2(yi − ŷ)α )1 2⁄
                        . . . (1) 

Since: x ̂, y ̂ represent the median magnitude of each of x, y respectively, while ψ represents the monotonic function of 

Huber.  

Methods for Estimating Path Coefficients Using Correlation Matrix 

There are many ways to estimate the path parameters, including: 

1. Estimation of the path analysis coefficient using the simple correlation coefficient. The linear relationship between 

two random variables is described by the so-called simple correlation coefficient; it is calculated according to Rodgers 

and Nicewander (1988) using the following formula: 

    𝑟𝑥,𝑦 =
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

=  
𝐸(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦

                                   … (2) 
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So, the 𝐶𝑜𝑣(𝑥, 𝑦): represent the covariance between the two variables 𝑥, 𝑦 whereas the 𝜎𝑥𝜎𝑦 symbolize the standard 

deviation of the variable 𝑦 and the variable 𝑥, respectively. 

So, the simple correlation coefficient, or the so-called Pearson correlation coefficient is affected by outliers. Several 

alternative impregnable methods have been proposed, including: 

                            Correlation: Biweight midcorrelation 1. Robust 

The Biweight midcorrelation is determined by the vectors 𝑥𝑖 , 𝑦𝑖       , 𝑖 = 1,2,3, … , 𝑚 for each vector according to 

Langfelder and Horvath (2012) as follows:  

𝑥 = [𝑥1 𝑥2 … 𝑥𝑚]         

𝑦 = [𝑦1 𝑦2 … 𝑦𝑚] 

The components of these vectors are defined as follows: 

𝑢𝑖 =
𝑥𝑖 − 𝑀𝑒𝑑(𝑥)

9𝑀𝑎𝑑(𝑥)
                                                                  … (3)      

𝑣𝑖 =
𝑦𝑖 − 𝑚𝑒𝑑(𝑦)

9𝑚𝑎𝑑(𝑦)
                                                                    … (4) 

𝑀𝑒𝑑(𝑥) represents the magnitude of the median vector 𝑥, 𝑀𝑒𝑑(𝑦) stands for the magnitude of the median vector 

𝑦, 𝑀𝑎𝑑(𝑥):represents the mean absolute deviation of vector 𝑥, 𝑀𝑎𝑑(𝑦) stands for the mean absolute deviation of vector 

𝑦. 

The defined weights will be used as follows 

𝑤𝑖
(𝑥)

= (1 − 𝑢𝑖
2)2𝐼(1 − |𝑢𝑖|)                                               … (5)  

𝑤𝑖
(𝑦)

= (1 − 𝑣𝑖
2)2𝐼(1 − |𝑣𝑖|)                                                   … (6)  

Since: 𝐼 represents a unary function and defined in the following form: 

𝐼(𝑥) = {
1         , 𝑖𝑓    𝑥 > 0
0         ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

That is, this function 𝐼(1 − |𝑢𝑖|) is equal to 1 if it is (1 − |𝑢𝑖|) > 0, and is equal to zero otherwise. Also, the weights 

𝑤𝑖
(𝑥)

 whose value approaches one if the vector 𝑥𝑖  is equal to the median value of the vector 𝑥, and approaches zero if the 

magnitude of the median for the vector 𝑥𝑖approaches 9𝑚𝑎𝑑(𝑥). 

Therefore, we can define the Biweight midcorrelation for each of the vectors 𝑥 and 𝑦, which is symbolized by 

𝑏𝑖𝑐𝑜𝑟(𝑥, 𝑦) as follows: 

𝑥𝑖 =
(𝑥𝑖 − 𝑀𝑒𝑑(𝑥))𝑤𝑖

(𝑥)

√∑ [(𝑥𝑗 − 𝑀𝑒𝑑(𝑥))𝑤𝑗

(𝑥)
]

2
𝑚
𝑗=1

                                         … (7) 

 

𝑦
𝑖

=
(𝑦𝑖 − 𝑀𝑒𝑑(𝑦))𝑤𝑖

(𝑦)

√∑ [(𝑦𝑗 − 𝑀𝑒𝑑(𝑦)) 𝑤𝑗

(𝑦)
]

2
𝑚
𝑗=1

                      … (8)     

 𝑏𝑖𝑐𝑜𝑟(𝑥, 𝑦) = ∑ 𝑥𝑖𝑦𝑖
                                                          … (9)   

𝑚

𝑖=1
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It can be formulated as follows: 

 𝑏𝑖𝑐𝑜𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝑀𝑒𝑑(𝑥))𝑤𝑗

(𝑥)
(𝑦𝑖 − 𝑀𝑒𝑑(𝑦))𝑤𝑗

(𝑦)𝑚
𝑖=1

√∑ [(𝑥𝑗 − 𝑀𝑒𝑑(𝑥)) 𝑤𝑗
(𝑥)

]
2

∑ [(𝑦𝑗 − 𝑀𝑒𝑑(𝑦)) 𝑤𝑗

(𝑦)
]

2
𝑚
𝑗=1

𝑚
𝑗=1

(10) 

 

2. Percentage Bend Correlation      

This type of correlation, which is called the Percentage Bend Correlation, has proven relatively successful in controlling 

the probability of error of the first type of independent hypothesis test, which was named P.B.Corr. It is estimated through 

what is shown according to Wilcox (2011) as below:  

If we have a random sample consisting of two pairs of defined variables (𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛) and according to 

the observations 𝑋1, 𝑋2, … , 𝑋𝑛, and assuming that 𝑀𝑥 represents the sample median, and the selection of of 𝛽 is a defined 

quantity of 0 ≤ β ≤ 0.5  to calculate: 

 

𝑊𝑖 = |𝑋𝑖 − 𝑀𝑥| 

𝑚 = [(1 − 𝛽)𝑛] 

We note that the amount (1 − 𝛽)𝑛 is close to the integer values. 

Assuming that 𝑊(1) ≤ ⋯ ≤ 𝑊(𝑛) so that the values of 𝑊𝑖 are taken in descending order, that is: 

𝜔̂𝑥 = 𝑊(𝑚) 

Assuming that we have 𝑖1 of the values of 𝑋𝑖 such that (𝑋𝑖 − 𝑀𝑥)/𝜔̂𝑥 < −1 , and we have 𝑖2 as another number of values 

of 𝑋𝑖such that (𝑋𝑖 − 𝑀𝑥)/𝜔̂𝑥 > 1, then it will be calculated as: 

𝑆𝑥 = ∑ 𝑋(𝑖)                                                                        … (11) 

𝑛−𝑖2

𝑖=𝑖1+1

 

and: 

∅̂𝑥 =
𝜔̂𝑥(𝑖2 − 𝑖1) + 𝑆𝑥

𝑛 − 𝑖1 − 𝑖2

                                                              … (12)    

Let: 

𝑈𝑖 =
(𝑋𝑖 − ∅̂𝑥)

𝜔̂𝑥

                                                                         … (13) 

By repeating a set of calculations for the values of 𝑌𝑖, we get: 

 𝑉𝑖 =
(𝑌𝑖 − ∅̂𝑦)

𝑦𝑥

                                                                  … (14)  

Thus, we get: 

(15) … Ψ(𝑥) = 𝑀𝑎𝑥[−1, Min (1, 𝑥)]                                                 

Putting: 

                                            𝐵𝑖 = Ψ(𝑉𝑖)       ،𝐴𝑖 = Ψ(𝑈𝑖) 

We get the percentage of the twisted correlation between the variables 𝑋, 𝑌 estimated as follows: 
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𝑟𝑝𝑏 =
∑ 𝐴𝑖𝐵𝑖

√∑ 𝐴𝑖
2 ∑ 𝐵𝑖

2
                                                             … (16)   

3. Robust Correlation via Robust Principle Variables 

Suppose we have the correlation coefficients defined as follows: 

 ρ =
𝑣𝑎𝑟(𝑈) − 𝑣𝑎𝑟(𝑉)

𝑣𝑎𝑟(𝑈) + 𝑣𝑎𝑟(𝑉)
                                                               … (17)    

                       𝑈 = (
𝑋

𝜎1
+

𝑌

𝜎2
) /√2     ،𝑉 = (

𝑋

𝜎1
+

𝑌

𝜎2
) /√2Such that,  

They represent basic variables so that there is no common variance between them, i.e., 𝐶𝑜𝑣(𝑈, 𝑉) = 0 

And: 𝑉𝑎𝑟(𝑈) = 1 + 𝜌          ، 𝑉𝑎𝑟(𝑉) = 1 − 𝜌 

Presenting the standard function 𝑆(𝑋) as follows: 

𝑆(𝑎𝑋 + 𝑏) = |𝑎|𝑆(𝑋)                                                               … (18) 

Therefore, we can write the Robust Principle Variables of 𝑆2(. )corresponding to what is fixed in equation (15) to get the 

correlation as follows: 

 

𝜌∗(𝑋, 𝑌) =
𝑆2(𝑈) − 𝑆2(𝑉)

𝑆2(𝑈) + 𝑆2(𝑉)
                                                     … (19) 

By substituting the Robust Principle Variables of the sample in equation (17), the Robust Principle Variables of the 

correlation become as follows: 

𝜌̂ =
𝑆̂2(𝑈) − 𝑆̂2(𝑉)

𝑆̂2(𝑈) + 𝑆̂2(𝑉)
                                                                     … (20) 

Replacing the estimator of the standard deviation with the median absolute deviation, so that: 𝑆̂ = 𝑀𝐴𝐷(𝑥) that is 

defined in equation (18) to get a strong estimator known as the correlation coefficient of the median absolute deviation. It 

is known by Shevlyakov and Smirnov (2011) through the following equation: 

𝑟𝑀𝐴𝐷 =
𝑀𝐴𝐷2(𝑢) − 𝑀𝐴𝐷2(𝑣)

𝑀𝐴𝐷2(𝑢) + 𝑀𝐴𝐷2(𝑣)
                                               … (21) 

As each of 𝑢, 𝑣 represent the basic immune variables; they are calculated as follows: 

𝑢 =
𝑥 − 𝑀𝑒𝑑(𝑥)

√2𝑀𝐴𝐷(𝑥)
+

𝑦 − 𝑀𝑒𝑑(𝑦)

√2𝑀𝐴𝐷(𝑦)
                                                … (22) 

𝑣 =
𝑥 − 𝑀𝑒𝑑(𝑥)

√2𝑀𝐴𝐷(𝑥)
+

𝑦 − 𝑀𝑒𝑑(𝑦)

√2𝑀𝐴𝐷(𝑦)
                                                 … (23) 

7. Criteria to Choose Best Model 

There is a set of statistical criteria that will be addressed in this research to select the best models: 

1. Akaike’s Information Criteria 

It is expressed mathematically according to Wei (2006) as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿                                                                      … (24) 
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Since AICexpresses the Akaike's criterion of information, L: expresses the function of greatest possibility. 

 

2. Bayesian Information Criteria 

Its formula can be explained according to Akaike, (1981) as follows:   

𝐵𝐼𝐶(𝑘) = 𝑛 log 𝜎𝑎
2 − (𝑛 − 𝑘) ln (1 −

𝑘

𝑛
) + 𝑘 ln 𝑛 + 𝑘 ln [(

𝜎𝑌
2

𝜎𝑎
2

− 1) /𝑘]                               … (25) 

Since: 𝜎𝑌
2: represents the amount of variance; the model will be selected that corresponds to the lowest value of this 

criterion. 

1. Chi- Square Criterion (𝛘𝟐)                   

The model becomes more suitable for the data depending on the value of the chi-square criterion. Whenever the ratio of 

the calculated chi-square value to the tabular value of chi-square is small, that is, the ratio is greater than (2). This 

indicates that the inappropriateness of the model for the data used. However, if this ratio is Less than (2), the model 

becomes suitable for the data (Abu Zaid & Bassiouni, 2021). 

2. Absolute Fit Criterion 

According to Taghza (2012), the Absolute Fit Criterion includes: 

 

a) Goodness Fit Criterion is symbolized by (GFC), and its value ranges between (0-1). It is very similar to the 

coefficient of determination 𝑅2. So, if the value of the goodness fit criterion is greater than 0.9, then this means that 

the model exists, and if its value is equal to integer values, it indicates that the proposed model matches the 

assumed model. 

b) If Root Mean Square Error of Approximation (RMSER) value is less than or equal to 0.05, this means that the 

model matches the data. Likely, if RMSER value ranges between (0.08-0.05), it means that the model has been 

specifically successful. Furthermore, if the RMSER value is greater than 0.08, it means that there is a defect and the 

model is rejected. 

c) The value of Root Mean Square Residual Standard (RMSR) ranges between (0-0.1), and its low value indicates the 

extent to which the model is consistent with the data used. 

 

3. Incremental Fit Criterion (IFC), according to Al-Areeqi (2015), it includes: 

a) The Standard Fit Criterion (NFC) has a value that ranges between (0-1). The high value of NFC indicates the extent 

to which the model matches the data. 

b) Non-Normal Fit Criterion (NNFC) has a value which ranges between (0-1) and the model is consistent with the data 

when its value is greater than or equal to 0.95. 

c) The value of Comparative Fit Criterion (CFC) ranges between (0-1).  The value of 0.95 or more indicates a better fit 

for the model. 

4. Root Mean Square Error (RMSE OR RSE) 

RMSE represents the mean of the squares of the error, because the root is measured in the original units of the same 

values of the variables; it is calculated through the following equation: 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
∑ 𝑒𝑖

2𝑛
𝑖=1

𝑛
                                                         … (26) 
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Simulation experiments 

In this research, simulation experiments were performed for the problem under study. The researcher assumed a causal 

model that contains a several types of variables, i.e., external, internal and median random ones. The former includes 

random variables (𝑥1, 𝑥2    ( and the second including (𝑥5), and finally i.e., median random variables include (𝑥3, 𝑥4). 

The details and divisions of this causal model can be seen through the following figure: 

 

Figure 1. the causal model that includes the extrinsic, intrinsic, and median variables 

Figure 1 shows that many relationship scenarios were applied using the R program to illustrate the simulation 

experiments. Many data were generated for samples of different sizes, (𝑛 = 20,100,1000) and polluting the 

explanatory variables in the causal model with different contamination rates for each sample size, i.e., 

(5%, 20%, 35%). This was applied in generating data for random variables in order to form different sets of data with 

different problems. 

The random vector 𝑥, which includes the five variables of all kinds (external, median, and internal). They follow a 

multiple normal distribution with P variables, has been generated with mean μ, covariance and covariance matrix Σ. 

These variables can be clarified according to Chalmers and Adkins (2020) as: 

𝑥~𝑁𝑃 (𝜇, Σ)                                                                                          … (27)     

Such that: the random vector 𝑥 includes the variables shown in the causal model in Figure 1. The covariance matrix Σ 

includes the variances of the variables in the causal model as well. 

Assuming that there is a relationship between the variables in the causal model shown in Figure 1. Figure 1 also shows 

that there is a correlation between the variables through a correlation matrix that the researcher developed. Moreover, 

the mean score vector was determined, the covariance matrix was found among the five random variables. Then, the 

polluting process was applied, as the researcher relied on some of the above-mentioned percentages, which were chosen 

randomly, after which the abnormal values of the univariate data were generated using the box graph were revealed. 

Furthermore, the process of estimating the path coefficients was carried out based on the aforementioned estimation 

methods. Because the correlation is a binary relationship between two variables, the anomalous values will be found 

through the bivariate boxplot that depends on the ranks as the box moves from the observations of rank  
𝑛

4
 to the 

observations of the order 
3𝑛

4
. The central bar of the box is drawn in the middle, and in general, the concept of a bivariate 

box graph expresses what the scientist Tuky (1975) described is called the biplot. Figure 2 demonstrates: 
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Figure 2. The bivariate box diagram. 

 

After that, the path coefficients of the correlation matrices were found in the four ways for different sample sizes and 

contamination percentages that the researcher set. The results can be clarified through the Table 1.  

Table 1.  The contamination rates and criteria for the four methods with a sample size (n = 20) 

(𝑛 = 20)  

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

5% 

151.847 249.324 264.662 278.909 𝐴𝐼𝐶 

164.791 262.268 277.607 291.853 𝐵𝐼𝐶 

0.000 0.109 0.268 0.303 𝑅𝑀𝑆𝐸R 

0.007 0.037 0.079 0.038 𝑅𝑀𝑆𝑅 

0.087 0.290 0.059 0.965 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.860 0.990 1.000 0.975 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

20% 

229.186 263.503 274.218 271.916 𝐴𝐼𝐶 

242.131 276.448 287.163 284.861 𝐵𝐼𝐶 

0.406 0.281 0.000 1.318 𝑅𝑀𝑆𝐸R 

0.119 0.049 0.023 0.218 𝑅𝑀𝑆𝑅 

0.014 0.076 0.000 0.775 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.789 0.913 1.000 0.493 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

35% 

274.694 151.847 249.324 258.456 𝐴𝐼𝐶 

287.642 164.791 262.268 271.400 𝐵𝐼𝐶 

0.274 2.750 0.109 0.303 𝑅𝑀𝑆𝐸R 

0.080 0.115 0.037 0.038 𝑅𝑀𝑆𝑅 

0.082 0.000 0.290 0.059 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.975 0.112 0.990 0.088 CFI 

   

Table 1 includes the estimation path of coefficients at different contamination rates, and at a sample size of n = 20 for 

the four methods. We note through the statistical criteria and at the 5% contamination rate, the method of the relative 

skewness correlation, symbolized by 𝑟𝑝𝑏, is superior by obtaining the lowest values of the statistical criteria, which is a 

standard Akaike and the Bees criterion for information, as well as the root mean squares of residuals criterion (RMSER) 
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and the root mean squares of residuals criterion as shown in the yellow color in Table 1. The goodness of fit criterion, in 

which the value of this criterion is close to the correct one, which indicates that the proposed model matches with the 

assumed model, followed by the Robust correlation method, symbolized by  𝑟𝑀𝐴𝐷 , as shown in the green color in Table 

1. 

At 20% contamination rate, Table 1 shows that the relative torsion correlation method, symbolized by 𝑟𝑝𝑏, has the 

lowest values of information standards, which are the Bees and Akaike standards, as shown in yellow in the Table 1. It 

was followed by the superiority of the binary correlation weighted method (Robust correlation) 𝑟𝑏𝑖𝑐  which got the 

lowest values of the statistical criteria, i.e., the root mean squares of error and the root of the mean of the squares of the 

residuals, as well as the chi-square criterion and the goodness of fit criteria, also shown in the yellow color in the table, 

followed by the robust correlation method 𝑟𝑀𝐴𝐷 by obtaining the lowest values of four statistical criteria, which are the 

Akaike  criterion and the Biz criterion information and the RMS error and RMS  and the root mean square residual.  

As for the percentage of contamination of 35%, we note the superiority of the robust correlation method symbolized by  

𝑟𝑀𝐴𝐷 . It obtains the lowest values of information criteria, followed by the second weighted correlation method (robust 

correlation) symbolized by 𝑟𝑏𝑖𝑐 . Likely, we also note the superiority of the weighted binary correlation method in other 

criteria, which are two root mean standards, the error squares and the root mean squares of the residuals, followed by 

the simple correlation method which symbolized by 𝑟. Generally, we notice from Table 1 a discrepancy in the values of 

the statistical criteria for the aforementioned four methods. 

But when the sample size (n = 100), the path coefficients for the correlation matrices of the four methods and the 

contamination rates proposed by the researcher were found, and the results are shown in Table 1: 

 

Table 2. The contamination rates and criteria for the four methods (n = 100) 

(𝑛 = 100)  

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

5% 

1252.694 1194.939 1291.998 1290.003 𝐴𝐼𝐶 

1286.562 1228.806 1325.865 1323.870 𝐵𝐼𝐶 

0.000 0.253 0.000 0.361 𝑅𝑀𝑆𝐸𝐴 

0.013 0.032 0.014 0.120 𝑅𝑀𝑆𝑅 

0.868 0.001 0.000 0.661 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

1.000 0.949 1.000 0.845 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

20% 

1248.599 1207.899 1188.275 1236.407 𝐴𝐼𝐶 

1282.466 1241.766 1222.142 1270.274 𝐵𝐼𝐶 

0.000 0.000 0.000 0.500 𝑅𝑀𝑆𝐸𝐴 

0.013 0.019 0.010 0.087 𝑅𝑀𝑆𝑅 

1.100 1.789 1.022 52.030 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

1.000 1.000 1.000 0.830 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

35% 

1336.694 1166.004 1302.107 1367.881 𝐴𝐼𝐶 

1370.561 1199.871 1335.975 1401.749 𝐵𝐼𝐶 

0.307 0.084 0.104 0.273 𝑅𝑀𝑆𝐸𝐴 

0.090 0.019 0.035 0.093 𝑅𝑀𝑆𝑅 

0.000 0.126 0.000 0.181 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.835 0.995 0.984 0.811 CFI 

 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 1724-1736 

https://publishoa.com 

ISSN: 1309-3452 

 

1734 
 

Table 2 includes the estimation of the path coefficients for the correlation matrices of the four methods, the use of 

statistical criteria for comparison, and the statement of the preference of the methods used at sample size (n = 100) and 

at different contamination rates. As we note through the statistical criteria at 5% contamination that there is a 

discrepancy between the three methods, which is the robust correlation method denoted by 𝑟𝑀𝐴𝐷 and the relative torsion 

correlation 𝑟𝑝𝑏 method, as well as the weighted binary correlation method 𝑟𝑏𝑖𝑐  or through the values of the statistical 

criteria. We were unable to indicate any of the methods are better in determining the path parameters.  At 20% 

contamination, we clearly notice the superiority of the weighted binary correlation method 𝑟𝑏𝑖𝑐 , as shown in yellow in 

Table 2; it varies in the rest of the methods used. 

While at 35% contamination, the superiority of the robust correlation method, symbolized by𝑟𝑀𝐴𝐷 , is noticeable. it 

obtained the lowest values of the statistical criteria, as shown in yellow in Table 2, followed by the 𝑟𝑏𝑖𝑐   weighted binary 

correlation method shown in green in Table 2. 

 

In general, we notice a discrepancy between the two methods of 𝑟𝑏𝑖𝑐  and the robust correlation, symbolized by 𝑟𝑀𝐴𝐷 . 

They obtain the lowest values of the statistical criteria. 

But when the sample size is (n = 1000), the path coefficients of the correlation matrices of the methods used can be 

estimated and the results compared through the statistical criteria, as the results are shown in Table 2: 

 

Table 3. the contamination rates and criteria for the four methods (n = 1000) 

(𝑛 = 1000)  

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

5% 

6481.167 5105.224 11992.342 11941.689 𝐴𝐼𝐶 

7112.235 5169.025 12056.143 12005.490 𝐵𝐼𝐶 

0.020 0.060 0.000 0.562 𝑅𝑀𝑆𝐸𝐴 

0.006 0.011 0.004 0.010 𝑅𝑀𝑆𝑅 

0.247 0.010 0.000 0.609 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

1.000 0.997 1.000 0.935 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

20% 

6099.820 11476.444 2310.372 11916.612 𝐴𝐼𝐶 

6163.620 11540.245 2374.173 11980.413 𝐵𝐼𝐶 

0.052 0.724 0.000 0.421 𝑅𝑀𝑆𝐸𝐴 

0.003 0.070 0.006 0.006 𝑅𝑀𝑆𝑅 

0.000 0.000 0.026 0.382 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.999 0.722 1.000 0.971 CFI 

𝑟𝑝𝑏 𝑟𝑀𝐴𝐷  𝑟𝑏𝑖𝑐  𝑟  

35% 

2085.164 10957.779 2037.352 10444.363 𝐴𝐼𝐶 

2021.363 11021.580 1973.551 10508.164 𝐵𝐼𝐶 

0.027 2.686 0.050 0.277 𝑅𝑀𝑆𝐸𝐴 

0.002 0.002 0.002 0.008 𝑅𝑀𝑆𝑅 

0.000 0.000 0.000 0.030 𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒 

0.991 0.184 0.999 0.991 CFI 

    

We note from the above Table 3 which includes the estimation of the path coefficients for the correlation matrices by the 

four methods, at a sample size (n = 1000) and at different contamination rates. Furthermore, we note through the 

statistical criteria at 5% contamination, we note the superiority of the weighted binary correlation method 𝑟𝑏𝑖𝑐shown in 

yellow in Table 3 for four statistical criteria followed by the 𝑟𝑏𝑖𝑐  relative skew correlation method, which are shown in 

green in Table 3. 
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At 20% contamination rate, we notice clearly the superiority of the 𝑟𝑏𝑖𝑐  binary correlation method, which is shown in 

yellow, followed by the relative torsion correlation 𝑟𝑝𝑏 method, which is shown in green in Table 3. 

While at 35% contamination, we also notice the superiority of the weighted binary correlation 𝑟𝑏𝑖𝑐 , which is shown in 

yellow color in Table 3. It obtains the lowest values of the statistical criteria, followed by the method of the relative 

torsion correlation 𝑟𝑝𝑏. Furthermore, it is also followed by the robust correlation𝑟𝑀𝐴𝐷, as shown in the yellow color in 

Table 3. 

General, we notice that the larger the sample size is, the higher the contamination rate, the weighted binary correlation 

method and the hippocampal correlation excel in obtaining the lowest values of the statistical criteria, and its preference 

in estimating the path coefficients of the correlation matrix in this method. 

The results obtained for the methods, sample sizes and the used contamination percentages can be summarized in Table 

4. 

Table 4. The contamination rates and sample sizes for the best methods 

𝑛 = 1000 𝑛 = 100 𝑛 = 20  

𝑟𝑏𝑖𝑐  𝑟𝑀𝐴𝐷 𝑟𝑝𝑏 5% 

𝑟𝑏𝑖𝑐  𝑟𝑏𝑖𝑐  𝑟𝑝𝑏 20% 

𝑟𝑏𝑖𝑐  𝑟𝑀𝐴𝐷 𝑟𝑀𝐴𝐷 35% 

 

Table 4 shows according to the statistical criteria used that the larger the sample size and the higher the percentage of 

contamination of the data, the greater the robust correlation method or the so-called weighted binary correlation in 

estimating the path coefficients. However, there is a discrepancy in the preference of methods according to different 

sample sizes and contamination rates. 

Conclusion 

The research concluded that the robust methods are superior to the classical methods in estimating the coefficients path 

by using the correlation matrices of the mentioned methods and for all sample sizes and with any percentage of 

contamination, in addition, the larger the sample size and the percentage of contamination are, the better the results 

become. 
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