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Abstract 

In this paper the notions of radical, prime radical and quasi prime radical are extended to seminearrings and the results 

analogue to those on prime radical and quasi prime radical are presented. We also obtained the class of right duo 

seminearrings in various characteristic in terms of ideals. 
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1. Introduction 

B. Van Rootselaar, V.G. Van Hoorn introduced a seminearring, by combining the concepts of algebraic structures say 

nearring and semiring, in 1962 [1, 9]. If (𝑆, +) is a semigroup and (𝑆, . ) is another semigroup, then the triplet (𝑆, +, . ) 

with double binary operations called addition and multiplication with the right(left) distributive law referred to as 

right(left) seminearring. Semigroup mapping, linear sequential machines, secure communication system, and more uses 

of seminearrings may be found in [2]. The whole collection of semigroup mappings (Γ, +) with absorbance zero, which 

refers to point-by-point mapping addition and composition of the form 𝔐(Γ) [7]. The set of all mappings 𝔐(Γ) is a 

natural example of seminearrings [8]. 

In the study of nearrings, the concept of prime ideals and related radicals is crucial. The correlation between different 

forms of prime radicals and prime ideals in nearrings was totally demonstrated by Birkenmeier, Heatherly, and Lee [6]. 

In this paper, we define various prime ideals of seminearrings and obtain the interrelations among them. 

2. Preliminaries 

This section compiles all of the seminearring theory terms that we utilize in our research. 

A subset 𝐼 (non empty) of a seminearring (𝑆, +, . ) is called a left (right) ideal of 𝑆 if: (𝑖)𝑥 + 𝑦 ∈ 𝐼 for all 𝑥, 𝑦 ∈ 𝐼, 

(𝑖𝑖)𝑎. 𝑥 ∈ 𝐼(𝑥. 𝑎 ∈ 𝐼) for all 𝑥 ∈ 𝐼 𝑎𝑛𝑑 𝑎 ∈ 𝑆. If an ideal 𝐼 is called a two-sided ideal if it is a left and right ideal of 𝑆 [4, 

5]. An ideal 𝐼 of 𝑆 is called a proper ideal of 𝑆 if 𝐼 is a proper subset of 𝑆. A seminearring 𝑆 is called simple, if it has 

no proper ideals and it is called semi-simple if every ideal of 𝑆 is idempotent. We define the radical √𝐴 of 𝐴 to be {𝑎 ∈

𝑆/𝑎𝑘 ∈ 𝐴 for some integer 𝑘 greater or equal to 1} for 𝐴 ⊆ 𝑆 and clearly, 𝐴 ⊆ √𝐴. A seminearring S is 𝑃-semi-simple 

if √𝑆 = 0. An ideal 𝐼 of 𝑆 is called (𝑖) nilpotent, when 𝐼𝑚 = 0 for some integer 𝑚 which greater than or equals 1 

(𝑖𝑖) nil ideal if for every 𝑎 ∈ 𝐼 is nilpotent (𝑖𝑖𝑖) idempotent, if 𝐼2 = 𝐼 [3]. If every right (left) ideal of 𝑆 is two sided, 
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is said to be right (left) duo [3, 10]. When an ideal 𝑃 of 𝑆 is prime, 𝐴𝐵 ⊆ 𝑃 ⇒ 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝑃 for ideals 𝐴, 𝐵. When 

ideals 𝐴, 𝐵 of 𝑆 is irreducible, 𝑃 = 𝐴 ∩ 𝐵 gives either 𝑃 = 𝐴 or 𝑃 = 𝐵. An ideal is totally irreducible if 𝑃 = ∪ 𝐴𝛼  

implies 𝑃 = 𝐴𝛼 for 𝛼 ∈ 𝐼 of 𝑆. A subset of 𝑆 is denoted by 𝐾 has atleast one element is referred to as i) 𝑀-system if 

𝐾 ∩ 𝐵 ≠ ⌀, 𝐾 ∩ 𝐴 ≠ ⌀ (𝐴, 𝐵 ideals of 𝑆). ii) QM-system, if 𝐾 ∩ 𝐴 ≠ ⌀ implies 𝐾 ∩ 𝐴2 ≠ ⌀ (𝐴, an ideal of 𝑆). Any 

subseminearring 𝑇 of 𝑆 is clearly seen to be an M-system and every M-system is clearly a QM-system. In general, an 

M-system need not be a seminearring. 𝑟(𝐴) = ∩ {𝑃𝑖|𝑃𝑖  𝑎 𝑝𝑟𝑖𝑚𝑒 𝑖𝑑𝑒𝑎𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴}, 𝑞𝑟(𝐴) = ∩ {𝑄𝑖|𝑄𝑖  𝑎 𝑞𝑢𝑎𝑠𝑖 −

𝑝𝑟𝑖𝑚𝑒 𝑖𝑑𝑒𝑎𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴}. 

3. Main Results 

An ideal 𝑃  of 𝑆  is referred to as quasi-prime, if for any ideal 𝐴  of 𝑆 , 𝐴2 ⊆ 𝑃  implies 𝐴 ⊆ 𝑃  and we call the 

seminearring 𝑆 as quasi-prime ideal seminearring, if every ideal of 𝑆 is quasi-prime. Clearly every prime ideal is quasi-

prime. The converse, however, is not true, as illustrated by the following example. 

Example 3.1 For any integers 𝑛 > 0 and 𝑟 such that 1 < 𝑟 ≤ 𝑛 the ideal 𝐼 = 𝑋1
𝑎1𝑋2

𝑎2 … 𝑋𝑛
𝑎𝑛 (𝑋1, 𝑋2, … 𝑋𝑛) is a prime 

ideal, in the polynomial seminearring R[X1, X2, … Xn], which is not quasi prime. 

Example 3.2 Another example is let 𝐷 be an integral domain with atleast two maximal ideals. Let 𝑅 be the quotient 

seminearring of 𝐷, 𝑋 an indeterminate over 𝐾 and let 𝐼 = 𝐷 + 𝑋𝑅[𝑋]. Then 𝑋𝐼 is not prime ideal but that is quasi 

prime ideal. 

While r(A) and qr(A) are ideals of S, √A need not be an ideal of S as shown by the following example. 

Example 3.3 Consider the seminearring 𝑆 and take the ideal 6𝑍. Since the √𝑚𝑍 = 𝑟𝑍 where 𝑟 = Π𝑝|𝑚 and 𝑝 is a 

prime number. Here √6𝑍 = 6𝑍 but 6𝑍 is not a prime ideal since 6 is not prime.  

Lemma 3.1 Any intersection of prime (quasi-prime) ideals of R is quasi-prime.  

Proof. Let 𝐼 and 𝐽 be two ideals. The intersection of two ideals 𝐼 and 𝐽 always an ideal, regardless of whether 𝐼 and 𝐽 

are prime or not. If 𝑥, 𝑦 in 𝐼 ∩ 𝐽 gives 𝑥 + 𝑦 in 𝐼 and 𝑥 + 𝑦 in 𝐽 and hence 𝑥 + 𝑦 in 𝐼 ∩ 𝐽. 

Similarly if 𝑥 ∈ 𝐼 ∩ 𝐽 and 𝑟𝑥 ∈ 𝐼, 𝑟𝑥 ∈ 𝐽. Since 𝐼 and 𝐽 are ideals, hence 𝑟𝑥 ∈ 𝐼 ∩ 𝐽. If 𝑅 is commutative then this is 

enough to show that 𝐼 ∩ 𝐽 is an ideal and if 𝑅 is not commutative then use the same argument for the right multiplication. 

(for non-commutative right ideal assuming that ideal means two sided ideal). 

Lemma 3.2 An ideal 𝑃 in 𝑆 is prime iff it is QP and irreducible. 

Proof. Clearly 𝑃 be a both prime and irreducible. To prove the converse, assume that an ideal 𝑃 is quasi-prime and 

irreducible. Let 𝐴𝐵 ⊆ 𝑃 (𝐴, 𝐵 ideals of 𝑆). If we set, 𝐶 = (𝐴 ∪ 𝑃) ∩ (𝐵 ∪ 𝑃) = (𝐴 ∩ 𝐵) ∪ 𝑃, then 𝐶2 = [(𝐴 ∩ 𝐵) ∪

𝑃]2 ⊆ (𝐴 ∩ 𝐵)2 ∪ 𝑃 ⊆ 𝐴𝐵 ∪ 𝑃 ⊆ 𝑃. But 𝑃 is quasi-prime and so 𝐶 ⊆ 𝑃 ⊆ (𝐴 ∪ 𝑃) ∩ (𝐵 ∪ 𝑃) = 𝐶 . Thus 𝑃 = (𝐴 ∪

𝑃) ∩ (𝐵 ∪ 𝑃) and since 𝑃 is irreducible, we have 𝑃 = 𝐴 ∪ 𝑃 or 𝑃 = 𝐵 ∪ 𝑃. Hence 𝐴 is a subset of P or 𝐵 is a subset 

of 𝑃 and so 𝑃 is prime. This proves the result.  

Lemma 3.3 Every ideal of 𝐴 of 𝑆 is the intersection of totally irreducible ideals of 𝑆 containing 𝐴.  

Proof. When 𝐴 = 𝑆, the result is obvious. Suppose 𝐴 is proper, then there exists an element 𝑥 ∉ 𝐴. Let the collection of 

union of all ideals of 𝑆  be 𝑀  not containing 𝑥  containing 𝐴  and not containig 𝑥 . We claim that 𝑀  is totally 

irreducible. For, suppose 𝑀 =∩ 𝐾𝛼 , where 𝐾𝛼  are ideals of 𝑆. Then there is atleast one 𝛼 such that 𝑥 ∉ 𝐾𝛼 . Hence 

𝐾𝛼 ⊆ 𝑀. But 𝑀 ⊆ 𝐾𝛼 , so that 𝑀 = 𝐾𝛼 . Obviously 𝐴 ⊆∩ 𝑇𝑖 , where 𝑇𝑖  is a totally irreducible ideal containing 𝐴. If 𝐴 ⊂

∩  𝑇𝑖, then by the above argument, we can find a totally irreducible ideal containing 𝐴 and not containing ∩  𝑇𝑖 , which 

is a contradiction. Hence the result. 

Corollary 3.1 Every ideal 𝐴 of 𝑆 is the intersection of irreducible ideals of 𝑆 that contain 𝐴.  
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Proof. Since a totally irreducible ideal is irreducible, the result follows from Lemma 3.3  

Proposition 3.1 An ideal 𝐴 of 𝑆 is QP if and only if 𝐴 = 𝑞𝑟(𝐴). 

The following lemma gives a characterisation of prime termed as quasi-prime ideals 𝑀-systems (𝑄𝑀-systems). 

Lemma 3.4 An ideal 𝑃 if 𝑆 is [(i)]  

1. 𝑃′ a 𝑀-system if and only if 𝑆 is Prime. 

2. Quasi-prime if and only if 𝑃′ is a 𝑄𝑀-system.  

Proof. [(i)] 

1. Let 𝑃 be a prime. Two ideals 𝐴, 𝐵 in 𝑆. 𝑃′ ∩ 𝐴 ≠ ⌀ and 𝑃′ ∩ 𝐵 ≠ ⌀, then 𝐴 ⊈ 𝑃 and 𝐵 ⊈ 𝑃. Hence 𝐴𝐵 ⊈ 𝑃 

so that 𝑃′ ∩ 𝐴𝐵 ≠ ⌀. Therefore 𝑃′ is an 𝑀-system. The converse follows similarity.  

2. we can prove from (𝑖). 

  

Proposition 3.2 Let 𝐴  be an ideal of 𝑆  and 𝐾  an 𝑀-system disjoint with 𝐴 . Then 𝐴  is contained in an ideal 𝑃 , 

maximal with respect to the property of not meeting 𝐾. Further 𝑃 is prime.  

Proof. The set 𝑃 which is union of all ideals of 𝑆 disjoint with 𝐾 is clearly an ideal containing 𝐴 and is maximal with 

respect to the property of not meeting 𝐾. Now we claim that prime 𝑃. For, let 𝐵 ⊈ 𝑃 and 𝐶 ⊈ 𝑃 (𝐵, 𝐶 ideals of 𝑆). 

Then 𝐾 ∩ 𝐵 ≠ ⌀ and 𝐾 ∩ 𝐶 ≠ ⌀ and 𝐾 being an 𝑀-system, we have 𝐾 ∩ 𝐵𝐶 ≠ ⌀. Suppose 𝐵𝐶 ⊆ 𝑃. Then 𝐾 ∩ 𝐵𝐶 ⊆

𝐾 ∩ 𝑃 = ⌀, which contradicts our assumption, which proves 𝑃 is prime.  

Proposition 3.3 For any ideal 𝐴 of 𝑆, we have: [(i)]  

1. 𝑟(𝐴) = {𝑥 ∈ 𝑆 | 𝑒𝑣𝑒𝑟𝑦 𝑀 − 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑚𝑒𝑒𝑡𝑠 𝐴} 

2. 𝑞𝑟(𝐴) = {𝑥 ∈ 𝑆 | 𝑒𝑣𝑒𝑟𝑦 𝑄𝑀 − 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑚𝑒𝑒𝑡𝑠 𝐴}  

Proof. [(i)] 

1. If the set 𝐴(𝑀) = {𝑥 ∈ 𝑆 | 𝑒𝑣𝑒𝑟𝑦 𝑀 − 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑚𝑒𝑒𝑡𝑠 𝐴}, then clearly 𝐴(𝑀) ⊆ 𝑟(𝐴). Conversely, 

suppose that 𝑥 ∉ 𝐴(𝑀). To prove the result, it is enough to find a prime ideal containing 𝐴 and not containing 

𝑥. Since 𝑥 ∉ 𝐴(𝑀), there exists an 𝑀-system 𝐾 such that 𝐾 contains 𝑥 and 𝐾 ∩ 𝐴 = ⌀. Hence by Proposition 

3.1 in [10], there exists a prime ideal 𝑃 containing 𝐴 and not meeting 𝐾. Thus 𝑥 ∉ 𝑃 and this completes the 

proof.  

2. we can prove from (𝑖).  

Proposition 3.4 An ideal is prime in a right duo seminearring if and only if it is totally prime.  

Proposition 3.5 𝐴 of 𝑆 an ideal, 𝑟(𝐴) ⊆ √𝐴. when 𝑆 is right duo, then 𝑟(𝐴) = √𝐴.  

Proof. Let 𝑥 ∈ 𝑟(𝐴) and 𝐾 = {𝑥, 𝑥2, . . . } be the subseminearring generated by 𝑥 in 𝑆. Evidently 𝐾 is an 𝑀-system 

containing 𝑥 and so 𝐾 ∩ 𝐴 ≠ ⌀ (by Proposition 3.3 (i)). Hence 𝑥𝑛 ∈ 𝐴, for some integer 𝑛 ≥ 1 and so 𝑥 ∈ √𝐴. (i.e.) 

𝑟(𝐴) ⊆ √𝐴. To prove the equality, assume now that 𝑆 is a right duo seminearring. 

𝑥 ∈ √𝐴 ⇒ 𝑥𝑛 ∈ 𝐴, for some integer 𝑛 ≥ 1. 

  ⇒ 𝑥𝑛 ∈ 𝑃𝑖, for every prime ideal 𝑃𝑖 ⊇ 𝐴. 
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  ⇒ 𝑥 ∈ 𝑃𝑖 , since each 𝑃𝑖  is also totally prime (by Proposition 3.4). 

  ⇒ 𝑥 ∈∩ 𝑃𝑖 = 𝑟(𝐴). 

Thus √𝐴 ⊆ 𝑟(𝐴) and so 𝑟(𝐴) = √𝐴, as required. 

We next proceed to prove the equality of 𝑟(𝐴) and 𝑞𝑟(𝐴) for any ideal 𝐴 of 𝑆 the proof of which requires the following 

results.  

Lemma 3.5 If 𝑅 is any 𝑄𝑀-system in 𝑆 then for each 𝑎 ∈ 𝑅, we can find an 𝑀-system 𝐾 in 𝑆 such that 𝑎 ∈ 𝐾 and 

𝐾 ⊆ 𝑅. 

Proof. Since 𝑎1 = 𝑎 ∈ 𝑅, 𝑅 ∩ (𝑎1) ≠ ⌀ and hence, 𝑅 is being a 𝑄𝑀-system, we have 𝑅 ∩ (𝑎1)2 ≠ ⌀. Choose 𝑎2 ∈

𝑅 ∩ (𝑎1)2 . Then 𝑅 ∩ (𝑎2)2 ≠ ⌀ . Thus proceeding, we can find 𝑎𝑛+1 ∈ 𝑅 ∩ (𝑎𝑛)2, 𝑛 ≥ 2 . We claim that 𝐾 =

{𝑎1, 𝑎2, . . . } is the required 𝑀-system. To see this, let 𝐾 ∩ 𝐴 ≠ ⌀ and 𝐾 ∩ 𝐵 ≠ ⌀ (𝐴, 𝐵 ideals of 𝑅). 

Suppose 𝑎𝑚 ∈ 𝐴 and 𝑎𝑛 ∈ 𝐵. Then for 𝑘 = 𝑚𝑎𝑥{𝑚, 𝑛}, we have 𝑎𝑘+1 ∈ 𝑅 ∩ (𝑎𝑘)2 ⊆ (𝑎𝑘)2 ⊆ (𝑎𝑚)(𝑎𝑛) ⊆ 𝐴𝐵. 

Hence 𝐾 ∩ 𝐴𝐵 ≠ ⌀, proving that 𝐾 is an 𝑀-system. Since 𝐾 ⊆ 𝑅, the proof is complete.  

Theorem 3.1 For any ideal 𝐴 of 𝑆, 𝑟(𝐴) = 𝑞𝑟(𝐴).  

Proof. Clearly, 𝑞𝑟(𝐴) ⊆ 𝑟(𝐴). Let 𝑎 ∈ 𝑟(𝐴) and consider any 𝑄𝑀-system 𝑅 containing 𝑎. Then by Lemma 3.5 we 

can find an 𝑀-system 𝐾 such that 𝑎 ∈ 𝐾 and 𝐾 ⊆ 𝑅. Since 𝑎 ∈ 𝑟(𝐴), 𝐾 meets 𝐴 (by Proposition 3.3(i)). Hence 𝑅 

meets 𝐴 and so 𝑎 ∈ 𝑞𝑟(𝐴) (by Proposition 3.3(ii)). Thus 𝑟(𝐴) ⊆ 𝑞𝑟(𝐴) and this completes the proof.  

Corollary 3.2 𝑆 said to be a seminearring of quasi-prime ideal iff 𝐴 = 𝑟(𝐴) for every 𝐴 in 𝑆.  

Proof. This followed by the Theorem 3.1 and Proposition 3.1 

       The above Corollary, combined with Proposition 3.5 gives the following corollary.  

Corollary 3.3 A right duo-seminearring 𝑆 be a seminearring ideal of quasi-prime iff 𝐴 = √𝐴, for every 𝐴 of 𝑆. For any 

ideal 𝐴, we call 𝑟(𝐴) = 𝑞𝑟(𝐴), the prime radical of 𝐴. When the seminearring 𝑆 contains 0, we write 𝑟𝑎𝑑 𝑆 = 𝑟(0) 

and call it the prime radical of 𝑆. We call a seminearring 𝑆 with 0 as 𝑃-semi-simple if 𝑟𝑎𝑑 𝑆 = 0. 

In the rest of this section 𝑆 will denote a seminearring with 0.  

Proposition 3.6 For any seminearring 𝑆, 𝑟𝑎𝑑 𝑆 is a nil ideal. If 𝑆 is right duo, then 𝑟𝑎𝑑 𝑆 is precisely the set of all the 

nilpotent elements of 𝑆. 

Proof. By Proposition 3.5, 𝑟𝑎𝑑 𝑆 = 𝑟(0) ⊆ √(0) (= the set of the nilpotent elements of 𝑆) and 𝑟𝑎𝑑 𝑆 = √(0), if 𝑆 is 

right duo.  

Proposition 3.7 A 𝑃-semi-simple seminearring 𝑆 has no nilpotent ideals with a non-zero value. Conversely if 𝑆 has no 

nilpotent ideals with a non-zero value and further 𝑆 is right duo, then 𝑆 is 𝑃-semi-simple.  

Proof. Suppose 𝐴 is a nilpotent of 𝑆, so that 𝐴𝑚 = 0, for some integer 𝑚 ≥ 1. Then 𝐴𝑚 ⊆ 𝑟(0) and since 𝑟(0) is 

quasi-prime, we get 0 ≠ 𝐴 ⊆ 𝑟(0) = 𝑟𝑎𝑑 𝑆 = 0 (as 𝑆 is 𝑃-semi-simple). 

This is a contradiction and so 𝑆 has no nilpotent ideals with a non-zero value. 

Suppose now that 𝑆 is right duo and has no nilpotent ideals with a non-zero value. If possible, let 𝑎(≠ 0) ∈ 𝑟𝑎𝑑 𝑆 then 

𝑎𝑛 = 0, for some integer 𝑛 ≥ 1. Hence (𝑎)𝑛 = 0 (𝑆 being right duo) and so (𝑎) is nilpotent ideals with a non-zero 

value of 𝑆. This contradiction shows that 𝑟𝑎𝑑 𝑆 = 0. Hence 𝑆 is 𝑃-semi-simple, as required.  
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Corollary 3.4 A semi-simple right duo seminearring 𝑆 is 𝑃-semi-simple. 

Proof. Since 𝑆 is semi-simple, every ideals 𝐴 of 𝑆 is idempotent and so 𝑆 has no non-zero nilpotent ideal. Hence 𝑆 is 

𝑃-semi-simple, by Proposition 3.7.  

Theorem 3.2 The prime radical 𝑟𝑎𝑑 𝑆 of 𝑆 is precisely the collection of the nilpotent strong elements in 𝑆.  

Proof. Let 𝑎0 ∈ 𝑆 such that 𝑎0 ∉ 𝑟𝑎𝑑 𝑆. Then a prime ideal 𝑃 of 𝑆 will exists such as 𝑎0 ∉ 𝑃. Hence 𝑃′ is an 𝑀-

system (by lemma 3.4(i)). Since 𝑎0 ∈ 𝑃′, 𝑃′ ∩ (𝑎0) ≠ ⌀ and so 𝑃′ ∩ (𝑎0)2 ≠ ⌀. Choose 𝑎1 ∈ 𝑃′ ∩ (𝑎0)2. Then 𝑃′ ∩

(𝑎1)2 ≠ ⌀. Thus proceeding, we can find 𝑎𝑛+1 ∈ 𝑃′ ∩ (𝑎𝑛)2, 𝑛 ≥ 1. We hence obtain a sequence {𝑎0, 𝑎1, . . . } with 

𝑎𝑛+1 ∈ (𝑎𝑛)2. Since 0 ∈ 𝑃′, it follows that no 𝑎𝑖 in this sequence can be 0. Thus 𝑎0 is not quite nilpotent. 

Conversely, let 𝑎 ∈ 𝑆 is not strongly nilpotent. Then there exists a sequence 𝐿 = {𝑎0, 𝑎1, . . . } with 𝑎0 = 𝑎 and 𝑎𝑛+1 ∈

(𝑎𝑛)2 such that 0 ∉ 𝐿. Hence 0 ∩ 𝐿 = ⌀. Let 𝑃 be the union of every ideals of 𝑆 disjoint with 𝐿. Evidently 𝑎 ∉ 𝑃. We 

now claim that 𝑃 is prime. Let 𝐴, 𝐵 be two ideals of 𝑆 such that 𝐴, 𝐵 ⊈ 𝑃. Then 𝐴 ∩ 𝐿 ≠ ⌀ and 𝐵 ∩ 𝐿 ≠ ⌀. Let 𝑎𝑚 ∈

𝐴 and 𝑎𝑛 ∈ 𝐵. If 𝑘 = 𝑚𝑎𝑥{𝑚, 𝑛} then 𝑎𝑘+1 ∈ (𝑎𝑘)2 ⊆ (𝑎𝑚)(𝑎𝑛) ⊆ 𝐴𝐵 and 𝑎𝑘+1 ∉ 𝑃, as 𝑃 ∩ 𝐿 = ⌀. Hence 𝐴𝐵 ⊈ 𝑃 

and so 𝑃 is prime. But 𝑎 ∉ 𝑃, so that 𝑎 ∉ 𝑟𝑎𝑑 𝑆. This proves the theorem.  

Conclusion 

Even in the hypothesis of the nearring, a right ideal is not the same as a left ideal. This heightens the need to learn more 

about a seminearring of this calibre. In this paper, certain fruitful outcomes of seminearring of the right pair that do not 

follow the aforementioned rule are observed.  
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