Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Inverse g-Eccentric Domination in Fuzzy Graph

S. Muthupandiyan¹ and A. Mohamed Ismayil²

¹Research Scholar, Department of Mathematics, Jamal Mohamed College(Affiliated to Bharathidasan University), Tiruchirappalli-620020, Tamilnadu, INDIA.

²Associate Professor of Mathematics, Jamal Mohamed College(Affiliated to Bharathidasan University), Tiruchirapppalli-620020, Tamilnadu, INDIA.

Corresponding Author E-mail: muthupandiyanmaths@gmail.com.

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract. A dominating set $D \subseteq V(G)$ in a fuzzy graph $G(\alpha, \beta)$ is said to be a g-eccentric dominating set if for every vertex b in V - D, \exists at least one g-eccentric vertex a of b in D. If V - D contains g-eccentric dominating set D' of a fuzzy graph $G(\alpha, \beta)$ then D' is called as an inverse g-eccentric dominating set with respect to D. The lowest cardinality taken over all the inverse g-eccentric dominating sets of G is called the inverse g-eccentric domination number. In this article, an inverse g-eccentric point set, the inverse g-eccentric dominating set and their numbers in fuzzy graphs are introduced. Bounds for some standard fuzzy graphs are obtained.

Keywords: g-Eccentric Dominating set, Inverse g-Eccentric Dominating set, Inverse g-eccentric domination number, Inverse g-eccentric point set, Inverse g-eccentric point number.

AMS Subject Classification 2020: 05C05, 05C12, 05C72.

I Introduction

The concept of fuzzy graphs(Simply written as FG) was pioneered by A. Rosenfeld [5] in the year 1975. V.R. Kulli and S.C. Sigarkanti developed the inverse domination in graph, in 1991[7]. In 2010, T.N. Janakiraman at.et., [3] began the eccentric domination in graph. In the year 2020, A.Mohamed Ismayil and S.Muthupandiyan [4] pioneered the geocentric domination in FG. R.Jahir Hussain and A. Fathima Begam [2] pioneered inverse eccentric domination in graphs in 2021.

The inverse g-eccentric point set, inverse g-eccentric dominating set, and their number in FG are presented in detail. For various standard FG, bounds for the inverse g-eccentric domination number are obtained. In this manuscript, some theorems on inverse g-eccentric domination in FG are posited and validated.

Harary [1] and A. Rosenfeld and S. Somasundaram [5, 6] might be used to refer to the graph and fuzzy graph theoretic terminologies, respectively.

Definition 1. [4, 5, 6] A FG $G = (\alpha, \beta)$ is characterized with two functions α on V and β on $E \subseteq V \times V$, where $\alpha : V \to [0,1]$ and $\beta : E \to [0,1]$ such that $\beta(a,b) \le \alpha(a) \land \alpha(b), \forall a,b \in V$. We expect that V is a non-empty finite set, β is reflexive and symmetric functions. We indicate the crisp graph $G^* = (\alpha^*, \beta^*)$ of the FG $G(\alpha, \beta)$ where $\alpha^* = \{a \in V : \alpha(a) > 0\}$ and $\beta^* = \{(a,b) \in E : \beta(a,b) > 0\}$.

Definition 2. [4] A path P of length n is a sequence of distinct nodes a_0, a_1, \ldots, a_n such that $\mu(a_{i-1}, a_i) > 0, i = 1, 2, \ldots, n$ and strength of the path P is $s(P) = min\{\beta(a_{i-1}, a_i), i = 1, 2, \ldots, n\}$.

Definition 3. [4] An edge is said to strong edges (or strong arc) if its weight is equal to the strength of connectedness of its end nodes. Symbolically, $\beta(a,b) \ge CONN_{G-(a,b)}(a,b)$.

Definition 4. [4, 6] The order and size of a FG $G(\alpha, \beta)$ are mentioned by $p = \sum_{a \in V} \tau(a)$ and $q = \sum_{ab \in E} \omega(a, b)$ respectively.

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Definition 5. [4] Let $G(\alpha, \beta)$ be a FG. The strong degree of a vertex $b \in \alpha^*$ is defined as the sum of membership values of all strong arcs incident at b and it is denoted by $d_s(b)$. It is also characterised by $d_s(b) = \sum_{\alpha \in N_s(b)} \beta(\alpha, b)$ where $N_s(b)$ denotes the set of all strong neighbours of b.

Definition 6. [4] A strong path π from a to b is called geodesics in a FG in the event that there is no shorter strong path from a to b and a length of an a - b geodesic is the geodesic distance(g-distance)from a to b and is intend through $d_a(a,b)$.

Note: The length of the geodesic distance $d_s(a, b)$ is the number of strong edges present in the path.

Definition 7. [3] The geodesic eccentricity (g-eccentricity) $e_g(a)$ of a node $a \in V$ in a connected FG $G = (\alpha, \beta)$ is characterized by $e_g(a) = max\{d_g(a,b), b \in V\}$. The least eccentricity among the vertices of G is g-radius and indicated by $r_g(G) = min\{e_g(a), a \in V\}$ and the greatest g-eccentricity among the vertices of G is called g-diameter and indicated by $d_g(G) = max\{e_g(a), a \in V\}$. A vertex b is a g-central vertex if $e_g(b) = r_g(G)$. Moreover, a vertex b in G is a g-peripheral vertex if $e_g(b) = d_g(G)$.

Definition 8. [4] Let $a, b \in V(G)$ be any two vertices in a FG $G(\alpha, \beta)$. A vertex a at g-distance $e_g(b)$ from b is a g-eccentric point of b. A vertex b's g-eccentric set is specified and intend through $E_g(b) = \{a/d_g(a, b) = e_g(b)\}$.

Definition 9. [4] The set $S \subseteq V$ in a FG $G(\alpha, \beta)$ is said to be a g-eccentric point set if for every $\alpha \in V - S$, there exists at least one g-eccentric point b of a in S.

Definition 10. [4] A dominating set $D \subseteq V(G)$ in a FG $G = (\alpha, \beta)$ is said to be a g-eccentric dominating set if each vertex $b \notin D$, then there exists at least a g-eccentric vertex a of b in D. The least scalar cardinality taken over all gED-set is called gED-number and is intend through $\gamma_{ged}(G)$.

Definition 11. [2, 7] Let D be the lowest dominating set in a FG $G(\alpha, \beta)$. If V - D contains a dominating set D' of G then D' is called an inverse dominating set related to D.

Definition 12. [4] A spider FG is a F-tree Sp_{α} , on 2n+1 vertices obtained by subdividing each edge of a F-star graph Sp_{α} , $|\alpha^*| = n+1$, $n \ge 3$.

II Inverse g-Eccentric Point Set in a Fuzzy Graph

The inverse g-eccentric point set and its number in a FG $G(\alpha, \beta)$ are addressed in this topic. In this context, numerous observations have been made.

Definition 13. Let $S \subseteq V$ in a FG $G(\alpha, \beta)$ is a g-eccentric point set(gEP-set). If V - S contains a g-eccentric point set S' of a FG $G(\alpha, \beta)$ then S' is called an inverse g-eccentric point set(INgEP-set) related to S. The inverse g-eccentric point set S' is minimal if there is no proper sub set S'' of S' in $G(\alpha, \beta)$. The lowest cardinality chosen over all the minimal INgEP-set is called the inverse g-eccentric number and is indicated by $e_g^{-1}(G)$ and simply intend through e_g^{-1} . The highest cardinality of a minimal INgEP-set is called an upper inverse g-eccentric point number and is intend through $E_g^{-1}(G)$ and simply intend through $E_g^{-1}(G)$ and simply intend through $E_g^{-1}(G)$ and simply intend through $E_g^{-1}(G)$.

Example 1.

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Figure 1

From the FG $G(\alpha, \beta)$ given in example 1, we observe that lowest g-EP-set is $S = \{b_2\}$. Then $V - S = \{b_1, b_3, b_4\}$ which contains g-EP-sets $S1 = \{b_3\}$ and $S_2 = \{b_4\}$. Therefore, S_1 is an INgEP-set and INgEP-number is $e_g^{-1}(G) = 0.6$ and S_2 is an upper inverse g-eccentric point set and upper INgEP-number is $E_g^{-1}(G) = 0.7$.

Observation 1:

- (i) For any FG $G(\alpha, \beta)$, $e_q(G) \leq e_q^{-1}(G) \leq E_q^{-1}(G)$.
- (ii) If S_1 is an INgEP-set, then $S_1' \supset S_1$ is also an INgEP-set.
- (iii) If S_1 is minimal INgEP-set, then $S'_1 \subset S_1$ is not an INgEP-set.
- (iv) In a F-tree $T_{\alpha i}$ every INgEP- set contains at least one pendent vertex.
- (v) For any FG $G(\alpha, \beta)$, $e_a(G) + e_a^{-1}(G) \le p$.

Observation 2 A path FG P_{α} , $|\alpha^*| = n$, $n \ge 4$ does not having INgEP-set.

Result 1

- (i) Let K_{α} be any complete FG, the $e_g^{-1}(K_{\alpha}) = \alpha_0'$ where $|\alpha^*| = n, \alpha_0' = \min\{\alpha(a), a \in V S\}$, where S is a lowest gEP-set of K_{α} .
- (ii) Let $K_{\alpha_{1},\alpha_{2}}$ be a complete bipartite FG, then $e_{g}^{-1}(K(\alpha_{1},\alpha_{2})) = \alpha_{10} + \alpha_{20}$, wher $|\alpha_{1}^{*}| = m$ and $|\alpha_{1}^{*}| = n$, $\alpha_{10} = \min\{\alpha(a), a \in V_{1} S\}$, $|\alpha_{1}^{*}| = n$, $\alpha_{20} = \min\{\alpha(b), b \in V_{1} S\}$, $V_{2} S_{1}$, $V_{2} V_{1} \cup V_{2}$.
- (iii) Let S_{α} be a star FG. Then $e_q^{-1}(S_{\alpha}) \leq 1, |\alpha^*| = n, n \geq 3$.
- (iv) Let W_{α} be a wheel FG. Then $e_q^{-1}(W_{\alpha}) \leq 2$, $|\alpha^*| = n$, $n \geq 5$.
- (v) Let C_{α} be a cycle FG, $|\alpha^*| = n, n \ge 4$, then $e_g^{-1}(C_{\alpha}) = \begin{cases} \frac{P}{2}, n \text{ is even} \\ \frac{P-\alpha_0}{2}, n \text{ is odd} \end{cases}$

III Inverse g-Eccentric domination in a Fuzzy Graph

The inverse g-eccentric dominating set, and their number in several standard FG, are presented and analysed in this topic.

Definition 14. Let D be the lowest gED-set in a FG $G(\alpha, \beta)$. If V - D contains a gED-set D' of a FG $G(\alpha, \beta)$ then D' is called an inverse g-eccentric dominating set(INgED-set) related to D. An INgED-set D' is called a minimal INgED-set if $D' \subset D$ is not an INgED-set. The lowest scalar cardinality of minimal INgED-set is known as the INgED-number of a FG $G(\alpha, \beta)$ and is intend through $G(\alpha, \beta)$.

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Example 2.

Figure 2

Consider the FG given in example 2, if a gED-set is $D = \{b_1, b_4\}$, then $V - D = \{b_2, b_3\}$. Consequently, V - D have an INgED-set is $D' = \{b_2, b_3\}$. Hence, an INgED-number $\gamma_{ged}^{-1}(G)$ of a FG is 0.9. Also, upper INgED-number $\Gamma_{ged}^{-1}(G)$ of a FG is 0.9.

Observation 3

- (i) If D is an INgED-set, then $D' \supset D$ is also an INgED-set.
- (ii) If D is a minimal INgED-set, then $D' \subset D$ is not an INgED-set.
- (iii) For any FG, if D is a lowest INgED-set then V-D may or may not have any gED-set. So, INgED-set not exists for some FG.

Example, For a path FG P_{α} , $|\alpha^*| = n$, n = 3, does not have an INgED-set.

Remark 1 Let *D* be an IND set in a FG $G(\alpha, \beta)$ and *S* be an INgEP-set of $G(\alpha, \beta)$. Then clearly $D \cup S$ is an INgED-set of $G(\alpha, \beta)$.

Remark 2 For any connected FG $G(\alpha, \beta)$

- (i) $\gamma(G) \leq \gamma_{ged}(G) \leq \gamma_{ged}^{-1}(G)$.
- (ii) $\gamma_{ged}^{-1}(G) \leq \Gamma_{ged}^{-1}(G)$.
- (iii) $\gamma_{ged}(G) + \gamma_{ged}^{-1}(G) \leq p$
- (v) For any star FG S_{α} , INgED-set does not exists.

Theorem 1. Let D be a lowest gED-set of a FG $G(\alpha, \beta)$. Then there exists an INgED-set D' of a FG $G(\alpha, \beta)$ in relation D if and only if every vertex in D has at least one g-eccentric vertex in V - D'.

Proof. Let D be a lowest gED-set of a FG $G(\alpha, \beta)$ and also G has INgED-set D' with respect to D. Let D' = V - D.

Then D' contains lowest gED-set. That's D' is also a gED-set. Therefore, every vertex in D has at least one g-eccentric vertex in V - D'. Conversely, let D be a lowest gED-set of a FG $G(\alpha, \beta)$ and every vertex in D has at least one g-eccentric vertex in V - D.

We know that V-D is also a D-set of $G(\alpha,\beta)$. Therefore, V-D is a gED-set of G with respect to D.

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Consequently, V-D contains lowest gED-set D'. Then D' is the lowest INgED-set with respect to D whose cardinality is the INgED-number of a FG $G(\alpha, \beta)$.

Theorem 2. $\gamma_{ged}^{-1}(K_{\alpha}) = \alpha_{10}, |\alpha^*| = n, n \ge 2 \text{ where } \alpha_{10} = min\{\alpha(a), a \in A_{10}\}$

$$V - D$$
.

Proof. Let b_1, b_2, \ldots, b_n be the vertices of $K_{\alpha}, |\alpha^*| = n, n \ge 2$. We know that $\gamma_{qed}(K_{\alpha}) = \alpha_0$.

Let $D = \{b_1\}$ be the lowest gED-set of K_{α} .

Let any vertex b_i in V-D is a lowest INgED-set. That is $D'=\{b_i\in V-\{b_1\}\}$ and anyone b_i in D' is a lowest INgED-set of a FG $G(\alpha,\beta)$ in relation D. Therefore, $\gamma_{ged}^{-1}(K_\alpha)=\alpha_{10}, |\alpha^*|=n, n\geq 2$ and $\alpha_{10}=\min\{\alpha(a), a\in V-D\}$.

Theorem 3. For a complete bipartite FG, $\gamma_{ged}^{-1}(K_{\alpha_{1,\alpha_{2}}}) = \alpha_{10} + \alpha_{20}$, where $\alpha_{10} = \min_{a \in V_{1}} \alpha(a)$ and $\alpha_{20} = \min_{b \in V_{2}} \alpha(b)$.

Proof. (K_{α_1,α_2}) , $\alpha = \alpha 1 \cup \alpha 2$ be any bipartite complete FG, where $|\alpha_1^*| = m$, $|\alpha_2^*| = n$, and $m, n \ge 2$ then each point α of V_1 is adjacent to every point b of V_2 and vice versa.

Let $D = \{a_1, b_1\}$ where $a_1 = min\{\alpha(a), a \in V_1\}$ and $b_1 = min\{\alpha(b), b \in V_2\}$ is a lowest gED-set. Then any vertex $a_i \in V_1 - \{a_1\}$ dominates all the vertices of V_2 and it is a g-eccentric vertex of all the vertices in $V_1 - \{a_i\}$. Similarly for $V_2 - \{b_1\}$.

Let $D'=\{a_i,b_i\}$ where $a_i\in V_1-\{a_1\}, i\neq 1$ and $b_i\in V_2-\{b_1,i\neq 1\}$. Then any two vertices $\{a_i,b_i\}\subseteq D'$ where $a_i\in V_1-\{a_1\}$ and $b_i\in V_2-\{b_1\}$ is a lowest INgED-set of a FG $G(\alpha,\beta)$ in relation D. Consequently, $\gamma_{ged}^{-1}(K_{\alpha_{1,\alpha_2}})=\alpha_{10}+\alpha_{20}$, where $\alpha_{10}=\min_{\alpha\in V_1}\alpha(\alpha)$ and $\alpha_{20}=\min_{b\in V_2}\alpha(b)$, $|\alpha_1^*|=m$, $|\alpha_2^*|=n$, and $m,n\geq 2$.

Theorem 4. Let W_{α} be wheel FG, $|\alpha^*| = n$ then the following results holds

(i)
$$\gamma_{aed}^{-1}(W_{\alpha}) = \alpha_{10}, |\alpha^*| = 4$$

(ii)
$$\gamma_{qed}^{-1}(W_{\alpha}) \le 2, |\alpha^*| = 5$$

(iii)
$$\gamma_{ged}^{-1}(W_{\alpha}) \leq 3, |\alpha^*| = 6$$

(iv)
$$\gamma_{aed}^{-1}(W_{\alpha}) \leq 2, |\alpha^*| = 7$$

$$(v) \gamma_{ged}^{-1}(W_{\alpha}) \leq \begin{cases} \frac{p-1}{3}, |\alpha^*| = n, n \geq 8 \ and \ n = 3m+1, m \geq 3 \\ \frac{p}{3}, |\alpha^*| = n, n \geq 8 \ and \ n = 3m \ or \ n = 3m+1, m \geq 3 \end{cases}$$

Proof:

(i) Let $G = W_{\alpha}$ and $|\alpha^*| = 4$. We know that $W_{\alpha} = K_{\alpha}$. Hence by a theorem $2 \gamma_{qed}^{-1}(W_{\alpha}) = \alpha_{10}$.

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

- (ii) Let $G = W_{\alpha}$ and $|\alpha^*| = 5$. We know that $\gamma_{ged}(W_{\alpha}) \le 2$. Let $D = \{a_1, b_2\}$ is a lowest gED-set. Then $V D = \{a_3, a_4, b\}$, where b is the central vertex of W_{α} . Consider $D' = \{a_3, a_4\} \subseteq V D$ which is a lowest INgED-set of G with respect to D. Consequently, $\gamma_{ged}^{-1}(W_{\alpha}) \le 2$, $|\alpha^*| = 5$
- (iii) Let $G = W_{\alpha}$ and $|\alpha^*| = 6$. Let $D = \{a_1, a_2, b\}$ is a lowest gED-set, where a_1, a_2 are adjacent non-central vertices and b is the central vertex. Consider $' = V D = \{a_3, a_4, a_5\}$, which is the lowest IngED-set. Therefore, $\gamma_{ged}(W_{\alpha}) \leq 3, |\alpha^*| = 6$.
- (iv) Let $G = W_{\alpha}$ and $|\alpha^*| = 7$. Let $D = \{a_1, a_4\}$ is a lowest gED-set. Then $V D = \{a_2, a_3, a_5, a_6, b\}$ where b is the central vertex. Consider $D' = \{a_2, a_5\}$ where a_2 dominates a_1, a_3, v and a_5 dominates a_6, a_4, b and also a_2 is an gE-point of a_6, a_4, b and a_5 is an gE-point of a_1, a_3, b . Therefore, D' is the lowest IngED-set with respect to D. Hence, $\gamma_{aed}^{-1}(W_{\alpha}) \leq 2, |\alpha^*| = 7$.
- (v) Let $G = W_{\alpha}$ and $|\alpha^*| = n, n \ge 8$. Let $D = \{a_1, a_2\}$ is a lowest gED-set of G where b is the central vertex and a_1, a_2 are adjacent non-central vertices. Then $V D = \{a_3, a_4, \dots, a_{n-1}\}$. In W_{α} each vertex a_i dominates two adjacent non-central vertices a_{i-1}, a_{i+1} and the central vertex b and also each non-central vertices is the g-eccentric vertex of all other non-adjacent non-central vertices and adjacent central vertex.

Case (i) n is even

(a) If
$$n = 2k = 3m + 1$$
 (m is odd)

$$\Rightarrow 2k = 3(m-1) + 4$$

$$\Rightarrow k = \frac{3(m-1)}{2} + 2$$

$$\Rightarrow k = 3l + 2 \left[Since let \frac{(m-1)}{2} = l \right]$$

Consider, $D' = \{a_3, a_6, \dots, a_{k-2}, a_{k+1}, a_{k+4}, \dots, a_{2k-4}, a_{2k-1}\}$ is a minimum INgED-set of G with respect to D.

$$\gamma_{ged}^{-1}(W_{\alpha}) \le \frac{p-1}{3}$$
, $|\alpha^*| = n, n = 2k = 3k + 1 \dots (1)$

(b) If n = 2k = 3m (m is even)

$$\Rightarrow k = 3l \left[\text{ since let } l = \frac{m}{2} \right]$$

Consider, $D'' = \{a_3, a_6, ... a_{k-3}, a_k, a_{k+3}, ..., a_{2k-3}, a_{2k-1}\}$ is a lowest INgEDset of *G* related to *D*.

$$\gamma_{ged}^{-1}(W_{\alpha}) \le \frac{p}{3}$$
, $|\alpha^*| = n, n = 2k = 3m \dots (2)$

(c) If
$$n = 2k = 3m + 2$$
 (m is even)

$$\Rightarrow k = 3 \frac{m}{2} + 1$$

$$\Rightarrow k = 2l + 1[since let \frac{m}{2} = l]$$

Consider, $D' = \{a_3, a_6, ..., a_{k-1}, a_{k+2}, a_{k+5}, ..., a_{2k-2}\}$ is a lowest INgEDset of G related to D. Therefore, $\gamma_{ged}^{-1}(W_{\alpha}) \leq \frac{p}{3}$, $|\alpha^*| = n, n = 2k = 3k + 2...(3)$

From (1), (2) and (3),

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

$$\gamma_{ged}^{-1}(W_{\alpha}) \le \begin{cases} \frac{p-1}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m+1, m \ge 3\\ \frac{p}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m \text{ or } n = 3m+1, m \ge 3 \dots (4) \end{cases}$$

Case (ii) n is odd

(a) If
$$n = 2k + 1 = 3m + 1$$
 (m is even)

$$\Rightarrow 2k = 3m$$

$$\Rightarrow k = 3l [since let l = \frac{m}{2}]$$

Consider, $D' = \{a_3, a_6, \dots, a_{k-3}, a_k, a_{k+3}, \dots, a_{2k-3}, a_{2k}\}$ is a INgED-set of G related to D. $\gamma_{ged}^{-1}(W_\alpha) \leq \frac{p-1}{3}$, $|\alpha^*| = n, n = 2k + 1 = 3m + 1 \dots (5)$

(b)If
$$n = 2k + 1 = 3m \ (m \ is \ odd)$$

$$\Rightarrow 2k = 3(m-1) + 2$$

$$\Rightarrow k = 3\frac{m-1}{2} + 1$$

$$\Rightarrow k = 3l + 1$$
 [since let $l = \frac{m-1}{2}$]

Consider, $D' = \{a_3, a_6, \dots, a_{k-4}, a_{k-1}, a_{k+2}, \dots, a_{2k-5}, a_{2k-2}, a_{2k}\}$ is a lowest INgED-set of G related to D. $\gamma_{ged}^{-1}(W_\alpha) \leq \frac{p}{3}$, $|\alpha^*| = n, n = 2k + 1 = 3m \dots (6)$.

(c) If
$$n = 2k + 1 = 3m + 2 \ (m \ is \ odd)$$

$$\Rightarrow 2k = 3(m-1) + 4$$

$$\Rightarrow k = 3\frac{m-1}{2} + 2$$

$$\Rightarrow k = 3l + 2 \left[\text{since let } l = \frac{m-1}{2} \right]$$

Consider, $D' = \{a_3, a_6, \dots, a_{k-2}, a_{k+1}, a_{k+4}, \dots, a_{2k-4}, a_{2k-1}, a_{2k}\}$ is a lowest INgED-set of G related to D. $\gamma_{ged}^{-1}(W_\alpha) \leq \frac{p}{3}$, $|\alpha^*| = n, n = 2k + 1 = 3m + 2 \dots (7)$.

From (5), (6) and (7)

$$\gamma_{ged}^{-1}(W_{\alpha}) \le \begin{cases} \frac{p-1}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m+1, m \ge 3\\ \frac{p}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m \text{ or } n = 3m+1, m \ge 3 \dots (8) \end{cases}$$

Hence from (4) and (8)

$$\gamma_{ged}^{-1}(W_{\alpha}) \le \begin{cases} \frac{p-1}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m+1, m \ge 3\\ \frac{p}{3}, |\alpha^*| = n, n \ge 8 \text{ and } n = 3m \text{ or } n = 3m+1, m \ge 3 \dots (4) \end{cases}.$$

IV Bounds on Inverse g-Eccentric Domination in Fuzzy Graph

In this section bounds on INgED in FG are discussed.

Theorem 5. For a spider FG Sp_{α} , $\gamma_{ged}^{-1}(Sp_{\alpha}) \leq p - \Delta_s(Sp) - 1$ where $|\alpha^*| = n, n = 2k + 1 \geq 9$ is the number of vertices of Sp_{α} .

Volume 13, No. 3, 2022, p. 1905-1912

https://publishoa.com

ISSN: 1309-3452

Proof. Let Sp_{α} be a spider FG, $|\alpha^*| = n, n = 2k + 1 \ge 9$. Then $r_q(Sp) = 2$ and $d_q(Sp) = 4$.

We know that $\gamma_{ged}(Sp_{\alpha}) \leq p - \Delta_s(Sp) - 1 = k = |N_s(a)|$ where a is the central vertex of Sp_{α} .

Let D be a lowest GED-set containing k-2 vertices of $N_s(a)$ and 2 pendent vertices of Sp_α which are not adjacent to the vertex which we have selected from $N_s(a)$ to D. Then D' = V - D contains remaining k-2 pendent vertices, and 2 vertices from $N_s(a)$ and the central vertex a.

Let D'' be the subset of D' containing k-2 pendent vertices and 2 vertices of $N_s(a)$. Then D'' is the lowest INgED-set of Sp_α with respect to D. Therefore, $\gamma_{ged}^{-1}(Sp_\alpha) = |D''| = k-2+2=k=p-\Delta_s(Sp_\alpha)-1$.

Theorem 6. For any connected FG, $G(\alpha, \beta)$, $\gamma_{ged}^{-1}(G) \leq \gamma^{-1}(G) \leq e_g^{-1}(G)$.

Proof: By Remark 1, every INgED-set is the union of inverse dominating set and INgEP-set. Hence, , $G(\alpha, \beta), \gamma_{ged}^{-1}(G) \leq \gamma^{-1}(G) \leq e_q^{-1}(G)$.

References

- 1. Harary F., Graph Theory, Addition-Wesley Publishing Company Reading, Mass (1992).
- 2. R.Jahir Hussian and A. Fathima Begam, Inverse Eccentric Domination in Graphs, Vol.20, Issue 4, Advances and Applications in Mathematical Science, pages:641-648, Feb- 2021.
- 3. T.N. Janakiraman, m. Bhanumathi and S. Muthumani, "Eccentric Domination in Graphs", Vol.2, International Journal of Engineering Science, Advanced Computing and Bio-Technology (Apr-June 2010).
- 4. A. Mohamed Ismayil and S. Muthupandiyan, g-Eccentric Domination in Fuzzy Graphs, Our Heritage (ISSN:0474-9030), Vol.68, Issue 4, Jan 2020.
- 5. A. Rosenfeld, In: L.A. Zadeh., K.S. Fu and M. Shimura, Eds,I, Fuzzy Graph Academic press, New york, 77 95(1975).
- Somasundaram, A., and S. Somasundaram. "Domination in fuzzy graphs-I." Pattern Recognition Letters 19.9 (1998): 787-791.
- 7. Kulli, V. R., and S. C. Sigarkanti. "Inverse domination in graphs." Nat. Acad. Sci. Lett 14.12 (1991): 473-475.