Algorithms for finding a Neighbourhood Total Restrained Dominating Set of Interval Graphs and Circular-Arc Graphs

Raviprakasha $\mathbf{J}^{\mathbf{1}}$, Dr V Ramalatha ${ }^{2 \boldsymbol{*}}$, Mamatha $\mathbf{R} \mathbf{M}^{\mathbf{3}}$
${ }^{1}$ Research Scholar, Department of Mathematics, Presidency University, Karnataka, India-560064.
${ }^{2 *}$ Associate Professor, Department of Mathematics, Presidency University, Karnataka, India-560064. ${ }^{3}$ Research Scholar, Department of Mathematics, Presidency University, Karnataka, India-560064.

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

A set $S_{n t r} \subset V(G)$ is a neighbourhood total restrained dominating set of a graph G if all the vertices in $V-S_{n t r}$ has one or more adjacent vertex in $S_{n t r}$ as well as in $V-S_{n t r}$ and also the each vertex in $S_{n t r}$ is adjacent to at least a vertex in $S_{n t r}$ and if the induced sub-graph $\left\langle N\left(S_{n t r}\right)\right\rangle$ has no isolated vertex. The cardinality of a minimum total restrained dominating set $S_{n t r}$ is called total restrained dominating number and is represented as $\gamma_{n t r}$.

In this paper, we are introducing Neighborhood total restrained domination and develop an algorithm to find neighbourhood total restrained dominating set for Interval graphs and circular-arc graphs.

Keywords: Dominating set, Neighbourhood, total dominating set, restrained dominating set, total restrained dominating set.

1. Introduction

A set $S \subset V(G)$ is a dominating set of a graph G, if each vertex in $V \backslash\{S\}$ is adjacent to one or more vertex in S. A dominating set S is a restrained dominating set if each vertex in $V \backslash\{S\}$ has an adjacent vertex in $V \backslash\{S\}$ [1]. The idea of restrained domination was introduced by Telle[2]. The set S is said to be a total restrained dominating set of a graph G, if every vertex in S has at least a neighbour in S [5][3]. And the induced sub-graph $\langle N(S)\rangle$ has no isolated vertex then S is called a neighbourhood total restrained dominating set of graph G. The cardinality of a minimum total restrained dominating set $S_{n t r}$ is called total restrained dominating number and is represented as $\gamma_{n t r}$. Henning[4] proved $\gamma_{n t r} \leq n-\frac{\Delta}{2}-1$ for a graph with $n \geq 4$ and maximum degree $\Delta \leq n-2$. Various critical concepts has been studied to investigate the removal and addition of an edge on restrained domination number in signed graphs[6]. Resolving restrained dominating set has been characterized for lexicographic product of graphs[7].

In this paper we are introducing the definition for Neighoborhood total restrained dominating set and algorithm to find a NTRD -set for interval family, Circular-Arc family and also few results. For algorithms we are using the interval graphs of degree at most 5 or 6 and the circular arc family which has no path of size 3 or more than 3 , because the algorithm fails for such circular-arc family of graphs. If a circular-arc graph has a path of size 2 with a pendent vertex at the end vertex, is not considerable.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Notations:

- NTRD - Neighborhood Total Restrained Dominating Set
- $\gamma_{n t r}$ - Neighborhood Total Restrained Number
- NI - first non intersecting vertex
- nrd - neighborhood
- $\quad n r d^{+}$- All succeeding neighbors
- $n r d^{+1}$ - First succeeding neighbor
- $n r d^{-1}$ - First preceding neighbor

2. Main Results

Observation 2.1: For any path of order n

$$
\gamma_{n t r}\left(P_{n}\right)=\left\{\begin{array}{cc}
\frac{n}{2}+1 & n=6,10,14, \ldots \\
\frac{n}{2}+2 & n=8,12,16, \ldots \\
\frac{(n+1)}{2}+1 & n=7,11,15, \ldots \\
\frac{(n+1)}{2}+2 & n=9,13,17, \ldots
\end{array}\right.
$$

Proof: NTRD -set for a path of order $n \leq 5$ does not exists, the dominating does not satisfy the condition of NTRD -set.
Case 1: If n is even
Case 1.1: If $n=6,10,14, \ldots$

For $n=6, \gamma_{n t r}=4$

For $n=10, \gamma_{n t r}=6$

For $n=14, \gamma_{n t r}=8$
By proceeding the same, we may generalize it into
$\gamma_{n t r}\left(P_{n}\right)=\frac{n}{2}+1 ; \quad n=6,10,14, \ldots$
Case 1.2: If $n=8,12,16, \ldots$

For $n=8, \gamma_{n t r}=6$

For $n=12, \gamma_{n t r}=8$

For $n=16, \gamma_{n t r}=10$

In general we can write,

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452
$\gamma_{n t r}\left(P_{n}\right)=\frac{n}{2}+2 ; \quad n=8,12,16, \ldots$
Similarly,
Case 2: If n is odd
Case 2.1: If $n=7,11,15, \ldots$

For $n=7, \gamma_{n t r}=5$

For $n=11, \gamma_{n t r}=7$

For $n=15, \gamma_{n t r}=9$

In general we can write, $\gamma_{n t r}\left(P_{n}\right)=\frac{(n+2)}{2}+1$

Case 2.2: If $n=9,13,17, \ldots$

For $n=9, \gamma_{n t r}=7$

For $n=13, \gamma_{n t r}=9$

For $n=16, \gamma_{n t r}=11$
In general we can write, $\gamma_{n t r}\left(P_{n}\right)=\frac{(n+1)}{2}+2$

Observation 2.2 For any cycle

$$
\gamma_{n t r}\left(C_{n}\right)=\left\{\begin{array}{cc}
\frac{n}{2} & n=\{2 m \backslash m \geq 2 \text { is even }\} \\
\frac{n}{2}+1 & n=\{2 m \backslash m \geq 3 \text { is odd }\} \\
\frac{(n+1)}{2} & n=\{2 m+1 \backslash m \geq 2 \text { is even }\} \\
\frac{(n+3)}{2} & n=\{2 m+1 \backslash m \geq 3 \text { is odd }\}
\end{array}\right.
$$

Observation 2.3 For any complete graph $\gamma_{n t r}\left(K_{n}\right)=2$

Observation 2.4 For any wheel graph $\gamma_{n t r}\left(W_{n}\right)=2$
Observation 2.5 For windmill graphs

$$
\gamma_{n t r}\left(W_{n}^{m}\right)=\left\{\begin{array}{cc}
\text { does not exists } & \text { for } n=3 \\
2 & \text { for } n \geq 4
\end{array}\right.
$$

Observation 2.6 Neighborhood total restrained domination exists for a graph G of order $n \geq 4$.

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Observation 2.7 For any Graph $\gamma_{n t r}(G) \geq 2$

```
Algorithm 1: Algorithm to find a neighborhood total restrained dominating set for an Interval family
Input: \(I=\left\{i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right\}\)
```

Output: minimum neighborhood total restrained dominating set for the given interval family
Step 1: NTRD $=\{ \}$
Step 2: $x=i_{1}$
Step 3: $S=n r d[x]$
Step 4: If $S_{1}=\{y \in S \backslash y$ is adjacent to all other intervals in $S\}$ then

$$
\text { Step 4.1: } a=\max \left(S_{1}\right)
$$

Step 4.2: NTRD $=$ NTRD $\cup\{a\}$

Step 5: If there exists a pendent interval ${\underset{p}{p}}^{\in \operatorname{nrd}(a) \text { then }}$

$$
\mathrm{NTRD}=\mathrm{NTRD} \cup\left\{i_{p}\right\}
$$

else if there exists no pendent interval $i_{p} \in \operatorname{nrd}(a)$ then

$$
\text { NTRD }=\operatorname{NTRD} \cup\left\{n r d^{+1}(a)\right\}
$$

else there exists no $n r d^{+}(a)$ then

$$
\mathrm{NTRD}=\mathrm{NTRD} \cup\left\{n r d^{-1}(a)\right\}
$$

Step 6: $d=\max (A)$
Step 7: If $x=N I(d) \neq \varnothing$ then
go to Step 2.
else
go to Step 8
Step 8: End

Illustration:

Figure 1: Interval Family

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Figure 2: Interval Graph

Input: $I=\{1,2,3,4,5,6,7,8,9,10\}$
Step 1: NTRD = \{ \}
Step 2: $x=1$

Step 3: $S=n r d^{+}[x]=n r d^{+}[1]=\{1,2,3\}$
Step 4: $S_{1}=\{1,2,3\}$
Step 4.1: $a=3$
Step 4.2: $\operatorname{NTRD}=\operatorname{NTRD} \cup\{a\}=\{ \} \cup\{3\}=\{3\}$
Step 5: There exists no pendent vertex $i_{p} \in \operatorname{nrd}(a)$ then

$$
\operatorname{NTRD}=\operatorname{NTRD} \cup\left\{\operatorname{nrd}^{+1}(a)\right\}=\{3\} \cup\{4\}=\{3,4\}
$$

Step 6: $d=\max (\{\mathrm{NTRD}\})=\max (\{3,4\})=4$
Step 7: $x=N I(d)=N I(4)=7 \neq \varnothing$

Step 2: $x=7$

Step 3: $S=n r d^{+}[x]=n r d^{+}[7]=\{7,8,9,10\}$

Step 4: $S_{1}=\{7,8,9,10\}$

Step 4.1: $a=\max \left(S_{1}\right)=10$
Step 4.2: $\operatorname{NTRD}=\operatorname{NTRD} \cup\{10\}=\{3,4\} \cup\{10\}=\{3,4,10\}$

Step 5: There exists no pendent vertex $i_{p} \in \operatorname{nrd}(a)$ and also no $n r d^{+1}(a)$ then

$$
\text { NTRD }=\operatorname{NTRD} \cup\left\{n r d^{-1}(10)\right\}=\{3,4,10\} \cup\{9\}=\{3,4,9,10\}
$$

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Step 6: $d=\max (\mathrm{NTRD})=\max (\{3,4,9,10\}=10$
Step 7: $x=N I(d)=N I(10)=\varnothing$
Step 8: End
Output: $\operatorname{NTRD}=\{3,4,9,10\}$

Observation 2.8 By using algorithm 1 the induced sub-graph of NTRD -set is always disconnected if $n \geq 4 \in S$, where S is NTRD -set.

Theorem 2.1 Let i_{p} be a pendent interval in an interval graph G, if an interval $i \in \operatorname{nrd}\left[i_{p}\right]$ then the intervals i and i_{p} both must be in the neighbourhood total restrained dominating set $S_{n t r}$.

Proof: Suppose, i and i_{p} are not in S, i.e., $i, i_{p} \notin S_{n t r}$
$i \notin S_{n t r}$ and $i_{p} \notin S_{n t r}$
Here, the following two cases will arise,
Case 1: If $i \in S_{n t r}$ and $i_{p} \notin S_{n t r}$
i is the only neighbour of $i_{p} \quad\left(\because i_{p}\right.$ is a pendent interval)
i_{p} is dominated by i
By the definition of NTRD, we have $\left\langle N\left(S_{n t r}\right)\right\rangle$ has no isolated vertex(interval).
Here, $i_{p} \notin S_{n t r}$
$i_{p} \in\left\langle N\left(S_{n t r}\right)\right\rangle$ is an isolated interval.
which is a contradiction
$\therefore i_{p} \in S_{n t r}$ and $i \in S_{n t r}$

Case 2: If $i \notin S_{n t r}$ and $i_{p} \in S_{n t r}$
i_{p} has no neighbourhood in $S_{n t r}$ as $i \notin S_{n t r}$ is the only neighbourhood of i_{p}
which is again a contradiction
$\therefore i_{p} \in S_{n t r}$ and $i \in S_{n t r}$
From Case 1 and Case 2, both i and i_{p} must be in NTRD
Hence the proof.

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Algorithm 2: Algorithm to find NTRD -set for Circular-Arc graph
Input: Circular-Arc family
Output: A neighbourhood total restrained dominating set for a Circular-arc graph
Step 1: $\operatorname{NTRD}=\{ \}$
Step 2: $x=i_{1}$

Step 3: $S=n r d^{+}[x]$

Step 4: $S_{1}=n r d^{-}[x]$

Step 5: $S_{2}=\{y / y$ is adjacet to all other intervals in $S\}$

Step 5.1: $a=\max \left(S_{2}\right)$
Step 5.2: $\operatorname{NTRD}=\operatorname{NTRD} \cup\{a\}$
Step 6: If $\operatorname{nrd}(a)$ has a pendent vertex i_{p} then

$$
\mathrm{NTRD}=\mathrm{NTRD} \cup\left\{i_{p}\right\}
$$

else

$$
\operatorname{NTRD}=\operatorname{NTRD} \cup\left\{n r d^{+1}(a)\right\}
$$

Step 7: $d=\max$ (NTRD)

Step 8: $x=N I(d) \neq \varnothing \notin \operatorname{nr} d^{-}$(1) then
go to Step 2
else
go to Step 9
Step 9: End
Illustration:

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Figure 3: Circular - Arc Family

Figure 4: Circular - Arc Graph

Input: $I=\{1,2,3,4,5,6,7,8,9,10,11\}$
Step 1: NTRD=\{ \}
Step 2: $x=1$

Step 3: $S=n r d^{+}[1]=\{1,2,3\}$

Step 4: $S_{1}=n r d^{-}[1]=\{1,10,11\}$
Step 5: $S_{2}=\{1,2,3\}$

Step 5.1: $a=\max \left(S_{1}\right)=\max (\{1,2,3\})=3$
Step 5.2: $\operatorname{NTRD}=\operatorname{NTRD} \cup\{3\}=\{3\}$
Step 6: $\operatorname{nrd}(3)$ has no pendent vertex

$$
\operatorname{NTRD}=\operatorname{NTRD} \cup\{4\}=\{3,4\}
$$

Step 7: $d=\max (\{3,4\})=4$

Step 8: $x=N I(4)=7 \neq \varnothing \notin \operatorname{rrd}^{-}(1)$
Step 2: $x=7$
Step 3: $S=\{7,8,9\}$

Step 5: $S_{2}=\{7,8,9\}$

Step 5.1: $a=\max (\{7,8,9\}=9$
Step 5.2: $\operatorname{NTRD}=\{3,4\} \cup\{9\}=\{3,4,9\}$
Step 6: $\operatorname{nrd}(9)$ has no pendent vertex

$$
\operatorname{NTRD}=\{3,4,9\} \cup\{10\}=\{3,4,9,10\}
$$

Volume 13, No. 3, 2022, p. 1938-1947
https://publishoa.com
ISSN: 1309-3452

Step 7: $d=\max (\{3,4,9,10\})=10$
Step 8: $x=N I(10)=\varnothing$
Step 9: End
Output: $\operatorname{NTRD}=\{3,4,9,10\}$
Theorem 2.2: Let G_{i} be a connected interval graph with the order $p \geq 6$, maximum degree $\Delta \leq p-2$, and minimum degree $\delta \geq 2$, then

$$
\gamma_{n t r} \leq p-\frac{\Delta}{2}-1=\phi(p, \Delta)
$$

Proof: We prove by induction method on $l=p+q$
where, p is number of intervals and q is size of the graph.

We need to show that $\gamma_{n t r} \leq \phi(p, \Delta)$
Let $p \geq 6$ and $q \geq 7 \Rightarrow l \geq 13$
If $l=13$, the interval graph G_{i} has two 3-cycles and so,

$$
\gamma_{n t r}\left(G_{i}\right)=2=\phi(7,3)=\phi(p, \Delta)
$$

Now, let $l \geq 14$ and $p^{\prime} \geq 6, q^{\prime} \geq 8$ and $\Delta^{\prime} \geq 3$ be integer with $p^{\prime}+q^{\prime} \leq l$ and $\Delta^{\prime} \leq p-2$.
For hypothesis of the induction, suppose all connected interval graphs G_{i}^{\prime} of p^{\prime} intervals and q^{\prime} edges with the maximum degree Δ^{\prime} and minimum degree $\delta \geq 2$ assure $\gamma_{n t r}\left(G_{i}^{\prime}\right) \leq \phi\left(p^{\prime}, \Delta^{\prime}\right)$.

Let $G_{i}=(V, E)$ be a connected interval graph of p intervals and q edges with $l=p+q$, maximum degree $\Delta \leq p-2$ and minimum degree $\delta \geq 2$.

Claim 1: A connected proper interval sub-graph G_{i}^{\prime} of G_{i} of p^{\prime} intervals has maximum degree $\Delta \leq p^{\prime}-2$ and minimum degree at least 2, and the sub-graph $G_{i}-V\left(G_{i}^{\prime}\right)$ contains no isolated vertices, then $\gamma_{n t r} \leq \phi(p, \Delta)$.

Proof: The inductive hypothesis is satisfied by the graph G_{i}^{\prime} have size q^{\prime}. Then, $p^{\prime}+q^{\prime} \leq l$, and so G_{i}^{\prime}.

Let $p^{\prime}=p-k$ where $k \geq 0$.

By inductive hypothesis, $\gamma_{n t r}\left(G_{i}^{\prime}\right) \leq \phi\left(p^{\prime}, \Delta\right)=\phi(p-k, \Delta)=\phi(p, \Delta)-k$.

Hence, $\gamma_{n t r}\left(G_{i}\right) \leq \gamma_{n t r}\left(G_{i}^{\prime}\right)+k \leq \phi(p, \Delta)$, as desired.

Let, u be a vertex of maximum degree Δ in G_{i}, and let L be the set of all large vertices of G_{i}.
Claim 2: Every two vertices in $\mathrm{L} \backslash\{u\}$ have no common small neighbour.

Claim 3: Every vertex in $\mathrm{L} \backslash\{u\}$ has a neighbour which is not adjacent to the vertex u.

References

[1]. Gayla S. Domke, Johnnes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R. Markus, Restrained domination in graphs, Discrete mathematics, 203(1999) 61-69. DOI: 10.1016/S0012-365X(99)00016-3
[2]. J. A. Telle, Vertex partitioning problems: characterization, complexity and algorithms on partial k-trees, Ph.D. Thesis, University of Oregon, CIS-TR-94-18.
[3]. Johannes H. Hattingh, Elizabeth Jonck. Ernst J. Joubert, Andrew R. Plummer, Total restrained domination in trees, Discrete Mathematics 307 (2007) 1643-1650. DOI: 10.1016/j.disc.2006.09.014
[4]. M. A. Henning, J.E. Maritz, Total restrained domination in graphs with minimum degree two, Discrete Mathematics,m 308(2008) 1909-1920, DOI: 10.1016/j.disc.2007.04.039
[5]. Joanna Raczek, Joanna Cyman, Total restrained domination number of trees, Discrete Mathematics, 308(2008), 4450. DOI: 10.1016/j.disc.2007.03.041
[6]. Anisha Jean Mathias, V. Sangeetha, Mukthi Acharya, Critical conncepts of restrained domination in signed graphs, Discrete Mathematics Algorithms and Applications, 2021, 2250010.DOI: 10.1142/s1793830922500100
[7]. Gerald Bacon Monsanto, Helen M. Rara, Resolving Restrained Domination in Graphs, European Journal of Pure and Applied Mathematics, 2021, 14 (3), 829-841. DOI: 10.29020/ybg.ejpam.v14i3.3985

