Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Algorithms for finding a Neighbourhood Total Restrained Dominating Set of Interval Graphs and Circular-Arc Graphs

Raviprakasha J¹, Dr V Ramalatha^{2*}, Mamatha R M³

¹ Research Scholar, Department of Mathematics, Presidency University, Karnataka, India-560064.

^{2*}Associate Professor, Department of Mathematics, Presidency University, Karnataka, India-560064.
 ³Research Scholar, Department of Mathematics, Presidency University, Karnataka, India-560064.

 raviprakasha.j@presidencyuniversity.in
 mamatha.rm@presidencyuniversity.in

 *Corresponding Author E-mail: vennapusaramalatha@presidencyuniversity.in
 mamatha.rm@presidencyuniversity.in

Received 2022 April 02; Revised 2022 May 20; Accepted 2022 June 18.

Abstract

A set $S_{ntr} \subset V(G)$ is a neighbourhood total restrained dominating set of a graph G if all the vertices in $V - S_{ntr}$ has one or more adjacent vertex in S_{ntr} as well as in $V - S_{ntr}$ and also the each vertex in S_{ntr} is adjacent to at least a vertex in S_{ntr} and if the induced sub-graph $\langle N(S_{ntr}) \rangle$ has no isolated vertex. The cardinality of a minimum total restrained dominating set S_{ntr} is called total restrained dominating number and is represented as γ_{ntr} .

In this paper, we are introducing Neighborhood total restrained domination and develop an algorithm to find neighbourhood total restrained dominating set for Interval graphs and circular-arc graphs.

Keywords: Dominating set, Neighbourhood, total dominating set, restrained dominating set, total restrained dominating set.

1. Introduction

A set $S \subset V(G)$ is a dominating set of a graph *G*, if each vertex in $V \setminus \{S\}$ is adjacent to one or more vertex in *S*. A dominating set *S* is a restrained dominating set if each vertex in $V \setminus \{S\}$ has an adjacent vertex in $V \setminus \{S\}$ [1]. The idea of restrained domination was introduced by Telle[2]. The set *S* is said to be a total restrained dominating set of a graph *G*, if every vertex in *S* has at least a neighbour in *S* [5][3]. And the induced sub-graph $\langle N(S) \rangle$ has no isolated vertex then *S* is called a neighbourhood total restrained dominating set of graph *G*. The cardinality of a minimum total restrained dominating set S_{ntr} is called total restrained dominating number and is represented as γ_{ntr} . Henning[4] proved $\gamma_{ntr} \leq n - \frac{\Delta}{2} - 1$ for a graph with $n \geq 4$ and maximum degree $\Delta \leq n - 2$. Various critical concepts has been studied to investigate the removal and addition of an edge on restrained domination number in signed graphs[6]. Resolving restrained dominating set has been characterized for lexicographic product of graphs[7].

In this paper we are introducing the definition for Neighoborhood total restrained dominating set and algorithm to find a NTRD -set for interval family, Circular-Arc family and also few results. For algorithms we are using the interval graphs of degree at most 5 or 6 and the circular arc family which has no path of size 3 or more than 3, because the algorithm fails for such circular-arc family of graphs. If a circular-arc graph has a path of size 2 with a pendent vertex at the end vertex, is not considerable.

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Notations:

- NTRD Neighborhood Total Restrained Dominating Set
- γ_{ntr} Neighborhood Total Restrained Number
- NI first non intersecting vertex
- nrd neighborhood
- *nrd*⁺ All succeeding neighbors
- nrd^{+1} First succeeding neighbor
- nrd^{-1} First preceding neighbor

2. Main Results

Observation 2.1: For any path of order n

$$\gamma_{ntr}(P_n) = \begin{cases} \frac{n}{2} + 1 & n = 6, 10, 14, \dots \\ \frac{n}{2} + 2 & n = 8, 12, 16, \dots \\ \frac{(n+1)}{2} + 1 & n = 7, 11, 15, \dots \\ \frac{(n+1)}{2} + 2 & n = 9, 13, 17, \dots \end{cases}$$

Proof: NTRD -set for a path of order $n \le 5$ does not exists, the dominating does not satisfy the condition of NTRD -set.

Case 1: If n is even

Case 1.1: If n = 6, 10, 14, ...

- For n = 6, $\gamma_{ntr} = 4$
- For n = 10, $\gamma_{ntr} = 6$
- For n = 14, $\gamma_{ntr} = 8$

By proceeding the same, we may generalize it into

$$\gamma_{ntr}(P_n) = \frac{n}{2} + 1; \quad n = 6, 10, 14, \dots$$

Case 1.2: If *n* = 8, 12, 16, ...

- For n = 8, $\gamma_{ntr} = 6$
- For n = 12, $\gamma_{ntr} = 8$

For n = 16, $\gamma_{ntr} = 10$

In general we can write,

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

$$\gamma_{ntr}(P_n) = \frac{n}{2} + 2; \quad n = 8, 12, 16, \dots$$

Similarly,

Case 2: If n is odd

Case 2.1: If *n* = 7,11,15,...

For n = 7, $\gamma_{ntr} = 5$

For n = 11, $\gamma_{ntr} = 7$

For n = 15, $\gamma_{ntr} = 9$

In general we can write, $\gamma_{ntr}(P_n) = \frac{(n+2)}{2} + 1$

Case 2.2: If n = 9, 13, 17, ...

- For n = 9, $\gamma_{ntr} = 7$
- For n = 13, $\gamma_{ntr} = 9$
- For n = 16, $\gamma_{ntr} = 11$

In general we can write, $\gamma_{ntr}(P_n) = \frac{(n+1)}{2} + 2$

Observation 2.2 For any cycle

$$\gamma_{ntr}(C_n) = \begin{cases} \frac{n}{2} & n = \{2m \mid m \ge 2 \text{ is even}\} \\ \frac{n}{2} + 1 & n = \{2m \mid m \ge 3 \text{ is odd}\} \\ \frac{(n+1)}{2} & n = \{2m+1 \mid m \ge 2 \text{ is even}\} \\ \frac{(n+3)}{2} & n = \{2m+1 \mid m \ge 3 \text{ is odd}\} \end{cases}$$

Observation 2.3 For any complete graph $\gamma_{ntr}(K_n) = 2$

Observation 2.4 For any wheel graph $\gamma_{ntr}(W_n) = 2$

Observation 2.5 For windmill graphs

$$\gamma_{ntr}(W_n^m) = \begin{cases} \text{does not exists} & \text{for } n=3\\ 2 & \text{for } n\ge 4 \end{cases}$$

Observation 2.6 Neighborhood total restrained domination exists for a graph G of order $n \ge 4$.

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Observation 2.7 For any Graph $\gamma_{ntr}(G) \ge 2$

Algorithm 1: Algorithm to find a neighborhood total restrained dominating set for an Interval family

Input: $I = \{i_1, i_2, i_3, ..., i_n\}$

Output: minimum neighborhood total restrained dominating set for the given interval family

Step 1: NTRD = { }

Step 2: $x = i_1$

Step 3: *S* = *nrd*[*x*]

Step 4: If $S_1 = \{y \in S \setminus y \text{ is adjacent to all other intervals in } S \}$ then

Step 4.1: $a = max(S_1)$

Step 4.2: NTRD = NTRD $\cup \{a\}$

Step 5: If there exists a pendent interval $i_p \in nrd(a)$ then

NTRD = NTRD $\cup \{i_n\}$

else if there exists no pendent interval $i_p \in nrd(a)$ then

NTRD = NTRD $\cup \{nrd^{+1}(a)\}$

else there exists no $nrd^+(a)$ then

 $NTRD = NTRD \cup \{nrd^{-1}(a)\}$

Step 6: *d*=*max*(*A*)

Step 7: If $x = NI(d) \neq \emptyset$ then

go to Step 2.

else

go to Step 8

Step 8: End

Illustration:

Figure 1: Interval Family

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Figure 2: Interval Graph

Input: $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Step 1: NTRD = {}

Step 2: x = 1

- **Step 3:** $S = nrd^+[x] = nrd^+[1] = \{1, 2, 3\}$
- **Step 4:** $S_1 = \{1, 2, 3\}$

Step 4.1: *a*=3

Step 4.2: NTRD = NTRD \cup {*a*} = {} \cup {3} = {3}

Step 5: There exists no pendent vertex $i_p \in nrd(a)$ then

NTRD = NTRD \cup {*nrd*⁺¹(*a*)} = {3} \cup {4} = {3,4}

Step 6: $d = max({NTRD}) = max({3, 4}) = 4$

- **Step 7:** $x = NI(d) = NI(4) = 7 \neq \emptyset$
- **Step 2:** x = 7

Step 3: $S = nrd^+[x] = nrd^+[7] = \{7, 8, 9, 10\}$

Step 4: $S_1 = \{7, 8, 9, 10\}$

Step 4.1: $a = max(S_1) = 10$

Step 4.2: NTRD = NTRD \cup {10} = {3,4} \cup {10} = {3,4,10}

Step 5: There exists no pendent vertex $i_p \in nrd(a)$ and also no $nrd^{+1}(a)$ then

NTRD = NTRD \cup {*nrd*⁻¹(10)} = {3,4,10} \cup {9} = {3,4,9,10}

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Step 6: $d = max(NTRD) = max({3, 4, 9, 10}) = 10$

Step 7: $x = NI(d) = NI(10) = \emptyset$

Step 8: End

Output: NTRD = $\{3, 4, 9, 10\}$

Observation 2.8 By using algorithm 1 the induced sub-graph of NTRD -set is always disconnected if $n \ge 4 \in S$, where *S* is NTRD -set.

Theorem 2.1 Let i_p be a pendent interval in an interval graph G, if an interval $i \in nrd[i_p]$ then the intervals i and i_p both must be in the neighbourhood total restrained dominating set S_{nrr} .

Proof: Suppose, *i* and i_n are not in *S*, i.e., $i, i_n \not\in S_{ntr}$

 $i \not\in S_{ntr}$ and $i_p \not\in S_{ntr}$

Here, the following two cases will arise,

Case 1: If $i \in S_{ntr}$ and $i_p \not\in S_{ntr}$

i is the only neighbour of i_p (: i_p is a pendent interval)

r

 i_p is dominated by i

By the definition of NTRD, we have $\langle N(S_{ntr}) \rangle$ has no isolated vertex(interval).

Here, $i_p \not\in S_{ntr}$

 $i_p \in \langle N(S_{ntr}) \rangle$ is an isolated interval.

which is a contradiction

$$\therefore i_p \in S_{ntr} \text{ and } i \in S_{ntr}$$

Case 2: If $i \not\in S_{ntr}$ and $i_p \in S_{ntr}$

 i_{n} has no neighbourhood in S_{ntr} as $i \not\in S_{ntr}$ is the only neighbourhood of i_{n}

which is again a contradiction

$$\therefore i_p \in S_{ntr} \text{ and } i \in S_{ntr}$$

From Case 1 and Case 2, both i and i_p must be in NTRD

Hence the proof.

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Algorithm 2: Algorithm to find NTRD -set for Circular-Arc graph

Input: Circular-Arc family

Output: A neighbourhood total restrained dominating set for a Circular-arc graph

Step 1: NTRD = { }

Step 2: $x = i_1$

Step 3: $S = nrd^{+}[x]$

Step 4: $S_1 = nrd^{-}[x]$

Step 5: $S_2 = \{y \mid y \text{ is adjacet to all other intervals in } S\}$

Step 5.1: $a = max(S_2)$

Step 5.2: NTRD = NTRD \cup {*a*}

Step 6: If nrd(a) has a pendent vertex i_p then

NTRD = NTRD $\cup \{i_n\}$

else

 $NTRD = NTRD \cup \{nrd^{+1}(a)\}$

Step 7: *d* = *max*(NTRD)

Step 8: $x = NI(d) \neq \emptyset \not\in nrd^{-}(1)$ then

go to Step 2

else

go to Step 9

Step 9: End

Illustration:

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

3

Figure 4: Circular – Arc Graph

Figure 3: Circular – Arc Family

Input: $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$

Step 1: NTRD={ }

Step 2: x = 1

Step 3: $S = nrd^+[1] = \{1, 2, 3\}$

Step 4: $S_1 = nrd^{-}[1] = \{1, 10, 11\}$

Step 5: $S_2 = \{1, 2, 3\}$

Step 5.1: $a = max(S_1) = max(\{1, 2, 3\}) = 3$

Step 5.2: NTRD = NTRD \cup {3} = {3}

Step 6: nrd(3) has no pendent vertex

 $NTRD = NTRD \cup \{4\} = \{3, 4\}$

Step 7: $d = max(\{3, 4\}) = 4$

Step 8: $x = NI(4) = 7 \neq \emptyset \not\in nrd^{-}(1)$

- **Step 2:** x = 7
- **Step 3:** $S = \{7, 8, 9\}$

Step 5: $S_2 = \{7, 8, 9\}$

Step 5.1: $a = max(\{7, 8, 9\} = 9$

Step 5.2: NTRD = $\{3, 4\} \cup \{9\} = \{3, 4, 9\}$

Step 6: nrd(9) has no pendent vertex

NTRD = $\{3, 4, 9\} \cup \{10\} = \{3, 4, 9, 10\}$

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Step 7: $d = max(\{3, 4, 9, 10\}) = 10$

Step 8: $x = NI(10) = \emptyset$

Step 9: End

Output: NTRD = $\{3, 4, 9, 10\}$

Theorem 2.2: Let G_i be a connected interval graph with the order $p \ge 6$, maximum degree $\Delta \le p-2$, and minimum degree $\delta \ge 2$, then

$$\gamma_{ntr} \leq p - \frac{\Delta}{2} - 1 = \phi(p, \Delta)$$

Proof: We prove by induction method on l = p + q

where, p is number of intervals and q is size of the graph.

We need to show that $\gamma_{ntr} \leq \phi(p, \Delta)$

Let $p \ge 6$ and $q \ge 7 \Longrightarrow l \ge 13$

If l = 13, the interval graph G_i has two 3-cycles and so,

$$\gamma_{_{ntr}}(G_{_i})=2=\phi(7,3)=\phi(p,\Delta)$$

Now, let $l \ge 14$ and $p' \ge 6$, $q' \ge 8$ and $\Delta' \ge 3$ be integer with $p' + q' \le l$ and $\Delta' \le p - 2$.

For hypothesis of the induction, suppose all connected interval graphs G'_i of p' intervals and q' edges with the maximum degree Δ' and minimum degree $\delta \ge 2$ assure $\gamma_{vrr}(G'_i) \le \phi(p', \Delta')$.

Let $G_i = (V, E)$ be a connected interval graph of p intervals and q edges with l = p + q, maximum degree $\Delta \le p - 2$ and minimum degree $\delta \ge 2$.

Claim 1: A connected proper interval sub-graph G'_i of G_i of p' intervals has maximum degree $\Delta \le p'-2$ and minimum degree at least 2, and the sub-graph $G_i - V(G'_i)$ contains no isolated vertices, then $\gamma_{nr} \le \phi(p, \Delta)$.

Proof: The inductive hypothesis is satisfied by the graph G'_i have size q'. Then, $p' + q' \le l$, and so G'_i .

Let
$$p' = p - k$$
 where $k \ge 0$.

By inductive hypothesis, $\gamma_{ntr}(G'_i) \le \phi(p', \Delta) = \phi(p - k, \Delta) = \phi(p, \Delta) - k$.

Hence, $\gamma_{ntr}(G_i) \leq \gamma_{ntr}(G'_i) + k \leq \phi(p, \Delta)$, as desired.

Let, u be a vertex of maximum degree Δ in G_i , and let \bot be the set of all large vertices of G_i .

Claim 2: Every two vertices in $L \setminus \{u\}$ have no common small neighbour.

Volume 13, No. 3, 2022, p. 1938-1947 https://publishoa.com ISSN: 1309-3452

Claim 3: Every vertex in $\lfloor \setminus \{u\}$ has a neighbour which is not adjacent to the vertex u.

References

- [1]. Gayla S. Domke, Johnnes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R. Markus, Restrained domination in graphs, Discrete mathematics, 203(1999) 61-69. DOI: 10.1016/S0012-365X(99)00016-3
- [2]. J. A. Telle, Vertex partitioning problems: characterization, complexity and algorithms on partial k-trees, Ph.D. Thesis, University of Oregon, CIS-TR-94-18.
- [3]. Johannes H. Hattingh, Elizabeth Jonck. Ernst J. Joubert, Andrew R. Plummer, Total restrained domination in trees, Discrete Mathematics 307 (2007) 1643-1650. DOI: 10.1016/j.disc.2006.09.014
- [4]. M. A. Henning, J.E. Maritz, Total restrained domination in graphs with minimum degree two, Discrete Mathematics,m 308(2008) 1909-1920, DOI: 10.1016/j.disc.2007.04.039
- [5]. Joanna Raczek, Joanna Cyman, Total restrained domination number of trees, Discrete Mathematics, 308(2008), 44-50. DOI: 10.1016/j.disc.2007.03.041
- [6]. Anisha Jean Mathias, V. Sangeetha, Mukthi Acharya, Critical conncepts of restrained domination in signed graphs, Discrete Mathematics Algorithms and Applications, 2021, 2250010.DOI: 10.1142/s1793830922500100
- [7]. Gerald Bacon Monsanto, Helen M. Rara, Resolving Restrained Domination in Graphs, European Journal of Pure and Applied Mathematics, 2021, 14 (3), 829-841. DOI: 10.29020/ybg.ejpam.v14i3.3985