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ABSTRACT 

A set 𝑆 ⊆ 𝑉(𝐺) in a graph G is said to be a [1,2]-complementary connected dominating set, if for every vertex 𝑣 ∈ 𝑉 −

𝑆, 1 ≤ |𝑁(𝑣) ∩ 𝑆| ≤ 2 and < 𝑉 − 𝑆 > is connected. The minimum cardinality of a [1,2]-complementary connected 

dominating set is called the [1,2]-complementary connected domination number and is denoted by 𝛾[1,2]𝑐𝑐(𝐺). In this 

paper, we exhibited the results based on [1,2]-complementary connected domination number for total graph.   
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1  Introduction 

   The graph 𝐺 = (𝑉, 𝐸), we mean a finite, undirected, connected graph with neither loops nor multiple edges. For graph 

theoretic terminology we refer to Chartrand and Lesniak [3] and Haynes et.al [4]. 

V. R. Kulli and B. Janakiraman [5] introduced the concept of nonsplit domination in graphs. Later Tamilchelvam [8] 

introduced the same concept in different name as complementary connected domination in graphs. Mustapha Chellali 

et.al., [7] first studied the concept of [1,2]-sets. Xiaojing Yang and Baoyindureng Wu [13] extended the study of this 

parameter. In [9], K. Renuka, et.al., introduced the concept of [1,2]-complementary connected domination number of 

graphs and studied its character and in [8], K. Renuka et.al., studied about cubic graphs in [1,2]-complementary connected 

domination number of graphs. In [11], T.Tamizh Chelvam et.al., studied the concept of complementary connectedness of 

graphs. In [12], J.Vernold Vivin et.al., studied about on harmonous coloring of total garphs of cycle, path and star graphs. 

In [1], M. M. Akbar Ali, et.al., discuseed about equitable coloring of central and total graphs in 2009. Later in [2], M. M. 

Akbar Ali and S. Panayappan discusses about cycle multiplicity of total graphs of cycle, path and star graphs in 2010. In 

[9], J. Vernold Vivin, et.al., discussed the results about harmonous coloring of total graphs for various graphs. In [6], T. P. 

Latchoumi et.al., studies about enhanncement system using grey-fuzzy graph. In [10], TL Yookesh et.al, studied 

defuzzificztion formula for modelling and scheduling for fuzzy project network. 

Motivated by the above concepts, in this paper we found [1,2]-complementary connected domination number for total 

graphs. 

2  Main Result 

Theorem 2.1 𝜸[𝟏,𝟐]𝒄𝒄(𝑻(𝑷𝒏)) =

{
 
 

 
 ⌊

𝟐𝒏−𝟏

𝟓
⌋ 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟑), 𝒇𝒐𝒓 𝒂𝒏𝒚 𝒏 ≥ 𝟏𝟏

⌈
𝟐𝒏−𝟏

𝟓
⌉ 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟑), 𝒇𝒐𝒓 𝒂𝒏𝒚 𝒏 ≤ 𝟖

⌈
𝟐𝒏−𝟏

𝟓
⌉ 𝒏 ≡ 𝟎, 𝟏(𝒎𝒐𝒅 𝟑)

  

Proof. Let 𝑣𝑖  be the vertices of 𝑃𝑛 , where 1 ≤ 𝑖 ≤ 𝑛  and 𝑣𝑖′  be the corresponding vertices of edge 𝑣𝑖𝑣𝑖+1 . Let 
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𝑉[𝑇(𝑃𝑛)] = {𝑣𝑖 , 𝑣𝑖′} and |𝑉[𝑇(𝑃𝑛)]| = 2𝑛 − 1. If 𝑛 = 2, then |𝑉[𝑇(𝑃𝑛)]| = 3, so that {𝑣1, 𝑣1′, 𝑣2} be the vertices of 

𝑉[𝑇(𝑃2)]. Now, 𝑣1′ forms the [1,2]𝑐𝑐-set and hence 𝛾[1,2]𝑐𝑐(𝑇(𝑃2)) = 1. If 𝑛 > 2, then |𝑉[𝑇(𝑃𝑛)]| = 2𝑛 − 1, so that 

{𝑣1, 𝑣1′, 𝑣2, 𝑣2′, … , 𝑣𝑛−1, 𝑣𝑛−1′, 𝑣𝑛} be the vertices of 𝑉[𝑇(𝑃𝑛)]. 

Case 1: 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

The set 𝑆1 = {𝑣2, 𝑣7, 𝑣4′} forms [1,2]𝑐𝑐-set of 𝑇(𝑃𝑛), for any 𝑛 ≤ 8. Hence 𝛾[1,2]𝑐𝑐(𝑇(𝑃𝑛)) = ⌈
2𝑛−1

5
⌉. The set 𝑆2 =

{𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛 , 𝑣4′, 𝑣9′, … , 𝑣𝑛−2′} forms [1,2]𝑐𝑐-set of 𝑇(𝑃𝑛), for any 𝑛 ≥ 11. Hence 𝛾[1,2]𝑐𝑐(𝑇(𝑃𝑛)) = ⌊
2𝑛−1

5
⌋. 

Case 2: 𝑛 ≡ 0,1(𝑚𝑜𝑑 3) 

The sets 𝑆1 = {𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛 , 𝑣4′, 𝑣9′, … , 𝑣𝑛−5′}  form [1,2]𝑐𝑐 -set of 𝑇(𝑃𝑛) , for any 𝑛 ≡ 0(𝑚𝑜𝑑 3)  and 𝑆2 =

{𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛−4, 𝑣4′, 𝑣9′, … , 𝑣𝑛−1′} form [1,2]𝑐𝑐 -set of 𝑇(𝑃𝑛), for any 𝑛 ≡ 1(𝑚𝑜𝑑 3) . Hence 𝛾[1,2]𝑐𝑐(𝑇(𝑃𝑛)) =

⌈
2𝑛−1

5
⌉.  

 

Theorem 2.2 𝛾[1,2]𝑐𝑐(𝑇(𝐾1,𝑛−1)) = 1, for any 𝑛 ≥ 2  

Proof. Let 𝑣0 be central vertex of star graph and 𝑆1 = {𝑣1, 𝑣2, … , 𝑣𝑛−1} be the vertices of pendant in star graph. Let 

𝑆2 = {𝑣1′, 𝑣2′, … , 𝑣𝑛−1′} be the vertices of 𝑇(𝐾1,𝑛−1). Since 𝑣0  is adjacent to both the set 𝑆1  and 𝑆2 , which forms 

[1,2]𝑐𝑐-set and hence 𝛾[1,2]𝑐𝑐(𝑇(𝐾1,𝑛−1)) = 1.  

 

Theorem 2.3 𝛾[1,2]𝑐𝑐(𝑇(𝐶𝑛)) =

{
 
 

 
 ⌊

2𝑛−1

5
⌋ 𝑛 ≡ 2(𝑚𝑜𝑑 3), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ≥ 11

⌈
2𝑛−1

5
⌉ 𝑛 ≡ 2(𝑚𝑜𝑑 3), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ≤ 8

⌈
2𝑛−1

5
⌉ 𝑛 ≡ 0,1(𝑚𝑜𝑑 3)

  

 

Proof. Let 𝑣𝑖  be the vertices of 𝐶𝑛 , where 1 ≤ 𝑖 ≤ 𝑛  and 𝑣𝑖′  be the corresponding vertices of edge 𝑣𝑖𝑣𝑖+1 . Let 

𝑉[𝑇(𝐶𝑛)] = {𝑣𝑖 , 𝑣𝑖′} and |𝑉[𝑇(𝐶𝑛)]| = 2𝑛 − 1. If 𝑛 = 2, then |𝑉[𝑇(𝐶𝑛)]| = 3, so that {𝑣1, 𝑣1′, 𝑣2} be the vertices of 

𝑉[𝑇(𝐶2)]. Now, 𝑣1′ forms the [1,2]𝑐𝑐-set and hence 𝛾[1,2]𝑐𝑐(𝑇(𝐶2)) = 1. If 𝑛 > 2, then |𝑉[𝑇(𝐶𝑛)]| = 2𝑛 − 1, so that 

{𝑣1, 𝑣1′, 𝑣2, 𝑣2′, … , 𝑣𝑛−1, 𝑣𝑛−1′, 𝑣𝑛} be the vertices of 𝑉[𝑇(𝐶𝑛)]. 

Case 1: 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

The set 𝑆1 = {𝑣2, 𝑣7, 𝑣4′} forms [1,2]𝑐𝑐-set of 𝑇(𝐶𝑛), for any 𝑛 ≤ 8. Hence 𝛾[1,2]𝑐𝑐(𝑇(𝐶𝑛)) = ⌈
2𝑛−1

5
⌉. The set 𝑆2 =

{𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛 , 𝑣4′, 𝑣9′, … , 𝑣𝑛−2′} forms [1,2]𝑐𝑐-set of 𝑇(𝐶𝑛), for any 𝑛 ≥ 11. Hence 𝛾[1,2]𝑐𝑐(𝑇(𝐶𝑛)) = ⌊
2𝑛−1

5
⌋. 

Case 2: 𝑛 ≡ 0,1(𝑚𝑜𝑑 3) 

The sets 𝑆1 = {𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛 , 𝑣4′, 𝑣9′, … , 𝑣𝑛−5′}  form [1,2]𝑐𝑐 -set of 𝑇(𝑃𝑛) , for any 𝑛 ≡ 0(𝑚𝑜𝑑 3)  and 𝑆2 =

{𝑣2, 𝑣7, 𝑣12, … , 𝑣𝑛−4, 𝑣4′, 𝑣9′, … , 𝑣𝑛−1′} form [1,2]𝑐𝑐-set of 𝑇(𝐶𝑛), for any 𝑛 ≡ 1(𝑚𝑜𝑑 3). Hence 𝛾[1,2]𝑐𝑐(𝑇(𝐶𝑛)) =

⌈
2𝑛−1

5
⌉.  

Theorem 2.4 𝛾[1,2]𝑐𝑐(𝑊𝑛) = 1 + ⌈
𝑛−1

3
⌉, for any 𝑛 ≥ 4.  

Proof. Let (𝑣1, 𝑣2, … , 𝑣𝑛) be the vertices of 𝑊𝑛 and 𝑣1 be the central vertex of 𝑊𝑛 and {𝑣2, 𝑣3, … , 𝑣𝑛} be the outer 
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vertices of 𝑊𝑛. Let {𝑣1, 𝑣2, … , 𝑣𝑛 , 𝑣2′, 𝑣3′, 𝑣4′, … , 𝑣𝑛′, 𝑢2′, 𝑢3′, … , 𝑢𝑛′} be the vertices of 𝑇(𝑃𝑛). If 𝑛 = 4, then {𝑣1, 𝑣2′} 

forms [1,2]𝑐𝑐 -set and 𝛾[1,2]𝑐𝑐(𝑊4) = 2 . Here, 𝑆1 = {𝑣1, 𝑣2′, 𝑣5′, 𝑣8′, … , 𝑣𝑛−1′}  forms [1,2]𝑐𝑐 -set when 𝑛 ≡

0, 2(𝑚𝑜𝑑 3) and 𝑆2 = {𝑣1, 𝑣2′, 𝑣5′, 𝑣8′, … , 𝑣𝑛−2′} forms [1,2]𝑐𝑐-set when 𝑛 ≡ 1(𝑚𝑜𝑑 3). Hence, 𝛾[1,2]𝑐𝑐(𝑊𝑛) = 1 +

⌈
𝑛−1

3
⌉.  

Theorem 2.5 𝛾[1,2]𝑐𝑐(𝑇(𝐹𝑟)) = 𝑟 + 1, for any 1 ≤ 𝑟 ≤ 𝑛 and 𝑛 ≤ 2.  

Proof. Let 𝑉(𝐹𝑟) = (𝑣1, 𝑣2, … , 𝑣𝑛). 𝐹𝑟 is constructed by 𝑟 copies of cycle 𝐶3 with common vertex and 𝑣1 is the central 

vertex of 𝐹𝑟 and {𝑣2𝑣3, 𝑣4𝑣5, … , 𝑣𝑛−1𝑣𝑛} be the wings of 𝐹𝑟. Let {𝑣1′, 𝑣2′, 𝑣3′, 𝑣1′′, 𝑣2′′, 𝑣3′′, … , 𝑣1
𝑟 , 𝑣2

𝑟 , 𝑣3
𝑟}, where 1 ≤

𝑟 ≤ 𝑛  be the vertices corresponding to the edges 𝐸(𝐹𝑟) . 𝑉(𝑇(𝐹𝑟)) = {𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖′, 𝑣𝑖′′, … , 𝑣𝑖
𝑟: 1 ≤ 𝑖 ≤

3 𝑎𝑛𝑑 1 ≤ 𝑟 ≤ 𝑛} . Let 𝑆 = {𝑣1, 𝑣𝑖
𝑟: 𝑖 = 3,1 ≤ 𝑟 ≤ 𝑛} , where 𝑖 ≤ 𝑟 ≤ 𝑛  form [1,2]𝑐𝑐 -set and |𝑆| = 𝑟 + 1 . Hence 

𝛾[1,2]𝑐𝑐(𝑇(𝐹𝑟)) = 𝑟 + 1.  
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