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Abstract:  

The Data Depth is used to measure the depth or area of any variation according to the distribution base. This results in 

the average natural centre-outer of the sample points. The essence of the deep procedure in multivariate analysis is to 

measure the degree of centrality of points associated with assumptions or probability distributions. This working data 

examines in-depth methods for determining the size of the site, ie. deepest or focal point. In addition, various in-depth 

procedures are studied in real and simulation contexts using R software. The performance of various data-depth 

processes is analyzed with numerical description by calculating the average misclassification error as part of a 

discriminative analysis. 

Keywords: Data Depth, Location, Scatter and Linear discriminant analysis. 

1.1  Introduction  

 The discipline statistics contributes almost all the fields, either directly or indirectly. In statistics, measure of 

location is extremely important for univariate / multivariate data analysis techniques. The conventional sample mean 

(vector) is very sensitive when the data contains extremes and thus gives the unreliable estimate of the population mean. 

For the past few decades, a substantial growth in statistics, specifically, in the context of estimation of measure of 

location such as robust based statistics, depth-based statistics etc. Now-a-days, the concept of depth in statistics attracts 

the researchers, because it gives the reliable estimates of location in a given data cloud. This chapter provides some 

preliminaries on data depth, development of data depth and also presents an overview of this dissertation.  

1.2  Data Depth  

Depth is an integer value that matches the specified candidate record. This results in an outside-inside/center-outside 

array sampling points. Normal order items are changed from the highest order. In a typical statistical table, the data is 

organized from the smallest to the largest sample point, but the statistical depth starts in the middle of the sample and 

extends in all directions.  

 

Data depth is a major concept from nonparametric tends to multivariate data analysis. There is one possible way of 

ordering the multivariate data, specifically to a centraloutward ordering.  Data depth is basically a position of the data 

point in whole data points in data cloud. The depth of a point is relative to the ‘deepest’ point in a given data cloud. The 

data depth isprovides center-outward ordering of points in any dimension and leads to a new non-parametric 

multivariate statistical analysis in which no distributional assumption is needed.Nonparametric analysis relies heavily 

on signs and ranks, order statistics, quantiles, and outlyingness functions. 

In principle, any function that provides a reasonable center-outside ordering of points in multidimensional space can be 

considered a depth function. Based on depth functions, methods of signs and ranks, order statistics, quantiles, and 

distance measures could be conveniently extended from a multivariate framework in a unified way. These functions 

form a basis for the detection of eccentricity contours, taking into account the geometry of the data.  
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1.3 Depth Contour 

The depth line is a line on a nautical chart that connects points of equal depth. A contour of a function of two variables 

is a curve along which the function has a constant value, such that the curve connects points of equal value. It is a planar 

section of the three-dimensional graph of the function f(x,y) parallel to the x,y-plane. Contour lines are curved, straight, 

or a mixture of the two lines on a map that describe the intersection of a real or hypothetical surface with one or more 

horizontal planes. The configuration of these contours allows map readers to derive the relative gradient of a parameter 

and to estimate that parameter at specific locations. 

2.Data Depth Procedures  

A variety of graphic and quantitative methods are defined for indices such as location, size, and shape, as well as to 

compare inference methods based on data depth. In recent decades, many concepts of depth have been proposed. The 

known depth methods such as Mahalanobis depth [1], Half Space Depth [2], Simplicial Depth [4], Simplicial Block 

Depth [3], Spatial Depth [12], Zonoid Depth [8], Projection Depth [13, 15] are summarized in this section. 

2.1 Half Space Depth 

It is introduced by Tukey in 1975. The depth of the point Half space 

 ==== nixxxSxxx ipiinp ,...,1);,.....,(),....,( 11 ℝ
p

 with respect to relative to a p - dimensional data 

set nS is  defined as the minimum number of data points in a closed half-space bounded by 𝑥. In the one-dimensional 

case, it is easy to see that the depth of a point is determined by the expression,    xx,#xx# ii min  the 

median is the point (or points) with maximal depth. In diversity, the median can be absolute because it has the greatest 

depth. This transition is called “Tukey median”. HSD is also known as “Tukey depth and Local depth”. 

2.2 Mahalanobis Depth 

The concept, generalized distance in statistics is given by Mahalanobis (1936). In 1975, the Mahalanobis distance was 

used as a measure to calculate the depth of a point. MD of a point  nSx ℝ
p

 relative to a p -dimensional data set 

defined as: 

( ) ( ) ( )
1

11;
−

−





 −−+= xxSxxSxMD

T

n          (1) 

where x  and S  are the mean vector and dispersion matrix of 𝑆𝑛. 

This function is unreliable because it relies on unreliable measures such as mean and variance matrix. Another 

disadvantage of this procedure is that it depends on the continuity of the second instants. 

2.3 Projection Depth 

Let µ(.) and σ(.) be univariate location and scale events, respectively. Then the outlyingness of a point with deference to 

the distribution function F of x defined by (Liu 1992) 

)F,x,u(Qsup)F,x(O
u 1=

=           (2) 

here, ( )( ) ( )uu

T FFxuFxuQ  /),,( −=  and uF  is the distribution of xuT
.  Let, µ (.) and σ (.) be multivariate 

case used a point of a p-dimensional data set. The projection depth (PD) is defined by 
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2.4 Simplicial Depth 

Liu (1990) introduced the concept of SD. This is the point  nSx ℝ
p

 respect to the data set of
 p -dimension Sn, 

defined as the number of closed simplexes containing x and having 1+p vertices in nS . In the bivariate case, the 

simplicial depth of a point x  is the number of triangles that passes through the vertices at nS  and contain x . SD is 

calculated as the probability that a point lies in a simplex built on d + 1 data points. 

( )  ( ) d

dFS Rx,X,...,XSxPF,xD = +11    (4) 

Simple depth is strong against extreme values. This is because if a set of sample points is represented by a maximum 

depth point, it is possible to arbitrarily deform up to a specified range of sample points without substantially changing 

the position of the representative point. It does not change when the connection level changes. However, single depth 

has no other desirable properties for measuring strong central stresses. With Centro symmetric distributions, there is not 

necessarily a clear point of maximum depth at the center of the distribution. Also, from the maximum depth point, the 

simple depth does not necessarily decrease smoothly. 

2.5 Simplicial Volume Depth 

Oja (1983) established a depth procedure using the SVD. A simplicial volume is an invariant of the homotopy of 

associated closed oriented manifolds introduced by Gromov (1983). Intuitively, simplicial volume phenomena are 

difficult to describe in terms of the simplicity (with real coefficients) of the manifold we are considering. 

Let M be an associated closed oriented manifold of dimension n. Then the simplicial volume of M (also called the 

Gromov norm of M) is defined as,    )== ;(inf:
11

MCccMM n is a fundamental cycle of  0M , 

where,   ;M(HM n ℝ) is the fundamental class of M  with real coefficients.  Oja depth of a point  nSx ℝ
p

relative to a p -dimensional data set Sn is defined as the sum of the volume of every closed simplex having a vertex at x 

and the others in any p points of the Sn data set. In the bivariate case, the Oja depth of a point x relative to a bivariate 

data set Sn is the sum of the areas of all triangles whose vertices are x, xi, xk with xi and xk belonging to Sn.  

2.6 Zonoid Depth 

Koshevoy and Mosler (1996) introduced a notion of data depth, called Zonoid Data Depth (ZD). The zonoid data depth, 

depth µ(x), of a point X ℝ
d

 is defined by, 

( )
( )  ( )



 

=
otherwise.0,

α, somefor  μD xif,μDx:αsup
depth

αα
x           (5) 

The data depth of a point x is the maximal height α at which )(ˆ   Zprojx . Here,    

 ( ) ( )





 


=  ZD

^

proj
1

       (6) 

where 10  . Further, the depth of x equals zero if x lies outside ( )D for all α; it equals one if x is the 

expectation. If α > 0, ( ) μDα
is the set of all points that include data depth greater than or equal to α. 
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2.7 Spatial Depth 

An implementation of the idea of spatial depth (SPD), established by Serfling (2002), which is defined as follows: Lt Y 

be d-dimensional random vectors have cumulative distribution function F. Then, the multivariate spatial depth of x ℝ

d
 qualified F is defined as, 

( ) ( ) ( ) 
EE

yxEyFd)yx(SF,xSD −−= −−= 11                             (7)                        where 
E

. is the 

Euclidean norm in ℝ
d

. The spatial depth is a depth function that builds ahead the notion of spatial (also called 

geometric) quantiles for multivariate data, considered by Chaudhuri (1996) and Koltchinskii (1997), formulated by 

Vardiand Zhang(2000) and Serfling (2002). This Spatial depth also called L1-depth. 

 

3.1  Computational Results 

This session presents the performances of “Data Depth” procedures such as “Mahalanobis depth, Halfspace depth, 

Simplicial depth, Simplicial volume depth, Spatial depth, Zonoid depth and Projection depth” which are studied under 

real data and simulation. The results obtained from the study are summarized in the section 4.2 and 4.3 respectively.  

Further, the efficiency of data depth procedures has been studied by applying it into multivariate technique, specifically 

in the context of classification problems under real datasets and the results are summarized in the section 4.4.  

3.2  Results on Real Data  

This section provides the performance of various data depth procedures by presenting the results of numerical 

representations performed under the actual data set and accounting for them with/without outliers. 

Case 1  

Data Description: For this study, a real data set was considered, namely cardata90, subset from data on cars (Chambers 

and Hastie (1993)) (Appendix: A1).  The data set contains two variables, with 60 observations. The variables are weight 

and engine displacement of cars. For the given data set, the 14th, 16th, 44th, 51st, 52nd, 53rd, 58th and 60th observations are 

identified as outliers through distance-distance plot (figure 3.1). The computed depth values and depth contour plots for 

all the observations (with/without outliers) under various depth procedures.The deepest point is located under various 

notions of depth procedures with and without outliers and is summarized in the table 3.1.  
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Figure 3.1: Distance-Distance Plots (with/without outlier) (cardata90) 

Table 3.1: Measure of location and the associated depth value under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PD 

With 

Outlier 

39 

(2880,151) 

0.998 

29 

(2780,133) 

0.350 

39 

(2880,151) 

0.282 

15 

(2285,153) 

0.766 

45 

(2885,143) 

0.859 

15 

(2285,153) 

0.963 

29 

(2780,133) 

0.648 

Without 

Outlier 

45 

(2885,143) 

0.966 

29 

(2780,133) 

0.385 

29 

(2780,133) 

0.293 

40 

(2975,153) 

0.681 

29 

(2780,133) 

0.868 

45 

(2885,143) 

0.907 

29 

(2780,133) 

0.663 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

In the table above, when we consider the value of the maximum depth, we notice that the half-space depth (HSD) and 

the projection (PD) provide the same depth point (position measurement) with and without values aberrant. Both of 

these methods work better than the other methods. After removing the outliers, “simplicial (ST) and simplicial (SVT) 

volume depths” yield the same location as the HST and PD. “Zonoid (ZD) and Mahalanobis (MD)” depth do not 

provide reliable location measurements (deep point). 

 

Case 2 

Data Description: For this study, a set of real data was considered, namely data on delivery times (Montgomery and 

Beck (1982), p.116). This dataset consists of three variables with 25 observations. The variables are the number of 

products (x1), the distance (x2) and the delivery time (x3). For a given data set, the 9th, 11th, 20th and 22nd 

observations are identified externally by distance plots (Figure 3.2). Calculated depth values for all observations with 

and without outliers. The deep point lies under various concepts of deep procedures with and without outliers and is 

summarized in Table 3.2 
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.  

 

Figure 3.2: Distance-Distance Plots (with/without outliers) (delivery time data) 

Table 3.2: Measure of location and the associated depth value under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PD 

With 

Outlier 

15 

(9,448,24) 

0.932 

6 

(7,330,18.11) 

0.4 

15 

(9,448,24) 

0.252 

7 

(2,110,8) 

0.756 

6 

(7,330,18.11) 

0.859 

15 

(9,448,24) 

0.771 

6 

(7,330,18.11) 

0.605 

Without 

Outlier 

6 

(7,330,18.11) 

0.905 

6 

(7,330,18.11) 

0.333 

19 

(3,36,9.5) 

0.303 

25 

(4,150,10.75) 

0.783 

6 

(7,330,18.11) 

0.772 

17 

(6,200,15.35) 

0.683 

6 

(7,330,18.11) 

0.5 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

From the above table, it is noticed that halfspace, spatial, projection depth performed well by comparing all the other 

depth procedures, since it gives the same location under with and without outliers. It is concluded that these procedures 

are robust in nature. 

3.3  Results on Simulation  

This section presents the performance of various data mining procedures by presenting results performed on simulated 

data with different levels of contamination. Also, various levels of pollution are considered with three categories 

namely location, quantity and location and scale of pollution. 
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3.3.1 Location Contamination 

Case 1 

This section presents the results of a simulation study with location contaminations. For this study, the data were 

simulated from (n=50) normal distribution, mean vector µ=(0,0), and unit covariance matrix, Ʃ=I2. The various level of 

contaminations (mean vector, µ=(4,4) and unit covariance matrix, Ʃ=I2) such as 0%, 1%, 2%, 5%, 10%, 20% and 25% 

are considered and the obtained results are summarized in the table 3.3. 

Table 3.3: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PRD 

0% 

21 

(0.220, 

-0438) 

0.885 

21 

(0.220, 

-0438) 

0.34 

21 

(0.220, 

-0438) 

0.278 

21 

(0.220, 

-0438) 

0.648 

13 

(0.236, 

0.345) 

0.776 

21 

(0.220, 

-0438) 

0.760 

10 

(0.527, 

0.016) 

0.632 

1% 

21 

(0.220, 

-0438) 

0.881 

21 

(0.220, 

-0438) 

0.34 

10 

(0.527, 

0.016) 

0.282 

13 

(0.236, 

0.345) 

0.687 

10 

(0.527, 

0.016) 

0.793 

21 

(0.220, 

-0438) 

0.760 

10 

(0.527, 

0.016) 

0.643 

2% 

13 

(0.236, 

0.345) 

0.909 

13 

(0.236, 

0.345) 

0.36 

13 

(0.236, 

0.345) 

0.282 

35 

(0.417, 

0.365) 

0.757 

13 

(0.236, 

0.345) 

0.818 

13 

(0.236, 

0.345) 

0.811 

13 

(0.236, 

0.345) 

0.675 

5% 

45 

(-0.204, 

-0.406) 

0.943 

13 

(0.236, 

0.345) 

0.38 

10 

(0.527, 

0.016) 

0.289 

7 

(-0.026, 

0.515) 

0.766 

13 

(0.236, 

0.345) 

0.832 

13 

(0.236, 

0.345) 

0.891 

10 

(0.527, 

0.016) 

0.683 

10% 

35 

(0.417, 

0.365) 

0.991 

15 

(-1.364, 

0.873) 

0.4 

15 

(-1.364, 

0.873) 

0.304 

18 

(0.438, 

1.497) 

0.721 

15 

(-1.364, 

0.873) 

0.971 

35 

(0.417, 

0.365) 

0.931 

15 

(-1.364, 

0.873) 

0.755 

15% 

42 

(0.726, 

0.694) 

0.996 

13 

(0.236, 

0.345) 

0.36 

13 

(0.236, 

0.345) 

0.298 

11 

(0.205, 

1.016) 

0.711 

32 

(0.413, 

0.485) 

0.899 

42 

(0.726, 

0.694) 

0.975 

32 

(0.413, 

0.485) 

0.729 

20% 

49 

(1.081, 

1.159) 

0.950 

31 

(0.662, 

0.232) 

0.36 

31 

(0.662, 

0.232) 

0.296 

29 

(0.302, 

-0.726) 

0.720 

31 

(0.662, 

0.232) 

0.915 

31 

(0.662, 

0.232) 

0.858 

31 

(0.662, 

0.232) 

0.669 

25% 

42 

(0.726, 

0.694) 

0.967 

35 

(0.417, 

0.365) 

0.38 

35 

(0.417, 

0.365) 

0.300 

32 

(0.413, 

0.485) 

0.767 

35 

(0.417, 

0.365) 

0.898 

42 

(0.726, 

0.694) 

0.916 

35 

(0.417, 

0.365) 

0.718 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

“Mahalanobis, Sonoid, and Half-Space depths” tolerate a certain amount of contamination and yield the same depth 

point (position measurement). Although data contamination is reduced, other depth mechanisms do not tolerate and 

provide the same depth point. 

Case 2: 
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This section presents the results of a simulation study. For this study, the data were simulated (n=100) from normal 

distribution with mean vector µ=(0, 0), and unit covariance matrix, Ʃ=I2. The various level of contaminations (mean 

vector, µ=(4,4) and unit covariance matrix, Ʃ=I2) such as 0%, 1%, 2%, 5%, 10%, 20% and 25% are considered and the 

obtained results are summarized given below. 

Table 3.4: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PRD 

0% 

41 

(-0.178, 

0.169) 

0.968 

41 

(-0.178, 

0.169) 

0.42 

41 

(-0.178, 

0.169) 

0.275 

40 

(0.258, 

0.317) 

0.688 

41 

(-0.178, 

0.169) 

0.918 

41 

(-0.178, 

0.169) 

0.901 

41 

(-0.178, 

0.169) 

0.784 

1% 

90 

(0.235, 

0.033) 

0.966 

41 

(-0.178, 

0.169) 

0.43 

41 

(-0.178, 

0.169) 

0.275 

82 

(0.414, 

0.183) 

0.706 

41 

(-0.178, 

0.169) 

0.919 

41 

(-0.178, 

0.169) 

0.906 

41 

(-0.178, 

0.169) 

0.782 

2% 

90 

(0.235, 

0.033) 

0.966 

41 

(-0.178, 

0.169) 

0.43 

41 

(-0.178, 

0.169) 

0.275 

40 

(0.258, 

0.317) 

0.696 

41 

(-0.178, 

0.169) 

0.920 

41 

(-0.178, 

0.169) 

0.892 

41 

(-0.178, 

0.169) 

0.792 

5% 

90 

(0.235, 

0.033) 

0.981 

41 

(-0.178, 

0.169) 

0.43 

41 

(-0.178, 

0.169) 

0.275 

20 

(0.294, 

0.834) 

0.711 

41 

(-0.178, 

0.169) 

0.921 

90 

(0.235, 

0.033) 

0.934 

41 

(-0.178, 

0.169) 

0.762 

10% 

3 

(0.429, 

0.506) 

0.990 

90 

(0.235, 

0.033) 

0.44 

90 

(0.235, 

0.033) 

0.276 

75 

(0.506, 

0.347) 

0.716 

90 

(0.235, 

0.033) 

0.925 

75 

(0.506, 

0.347) 

0.934 

90 

(0.235, 

0.033) 

0.734 

15% 

73 

(0.514, 

0.399) 

0.993 

90 

(0.235, 

0.033) 

0.42 

90 

(0.235, 

0.033) 

0.277 

73 

(0.514, 

0.399) 

0.685 

90 

(0.235, 

0.033) 

0.928 

73 

(0.514, 

0.399) 

0.964 

90 

(0.235, 

0.033) 

0.748 

20% 

73 

(0.514, 

0.399) 

0.968 

55 

(0.355, 

0.052) 

0.43 

55 

(0.355, 

0.052) 

0.278 

3 

(0.429, 

0.506) 

0.721 

55 

(0.355, 

0.052) 

0.951 

73 

(0.514, 

0.399) 

0.922 

90 

(0.235, 

0.033) 

0.846 

25% 

43 

(0.850, 

0.698) 

0.977 

73 

(0.514, 

0.399) 

0.43 

73 

(0.514, 

0.399) 

0.276 

90 

(0.235, 

0.033) 

0.696 

73 

(0.514, 

0.399) 

0.959 

43 

(0.850, 

0.698) 

0.938 

73 

(0.514, 

0.399) 

0.710 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

“Half Depths, Simplicial, Spatial and Projection depths” tolerate a certain amount of contamination and give the same 

depth point (measure of location). Although data contamination is minimal, other depth procedures cannot tolerate and 

do not provide the same depth point. 

3.3.2. Scale Contamination 

Case 3:      

This section presents the results of a simulation study. For this study, the simulated data (n=50) from normal 

distribution, mean vector µ= (0, 0), and unit covariance matrix, Ʃ=I2. The various level of contaminations (mean vector, 
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µ=(0,0) and unit covariance matrix, Ʃ=1.5I2) such as 0%, 1%, 2%, 5%, 10%, 20% and 25% are considered and the 

obtained results are summarized as follows. 

Table 3.5: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PRD 

0% 

15 

(-0.000, 

-0.344) 

0.996 

15 

(-0.000, 

-0.344) 

0.42 

15 

(-0.000, 

-0.344) 

0.306 

15 

(-0.000, 

-0.344) 

0.691 

15 

(-0.000, 

-0.344) 

0.964 

15 

(-0.000, 

-0.344) 

0.964 

15 

(-0.000, 

-0.344) 

0.731 

1% 

15 

(-0.000, 

-0.344) 

0.995 

15 

(-0.000, 

-0.344) 

0.42 

15 

(-0.000, 

-0.344) 

0.306 

10 

(-0.243, 

-0.486) 

0.731 

15 

(-0.000, 

-0.344) 

0.951 

15 

(-0.000, 

-0.344) 

0.958 

15 

(-0.000, 

-0.344) 

0.745 

2% 

15 

(-0.000, 

-0.344) 

0.981 

15 

(-0.000, 

-0.344) 

0.4 

15 

(-0.000, 

-0.344) 

0.305 

15 

(-0.000, 

-0.344) 

0.689 

15 

(-0.000, 

-0.344) 

0.952 

15 

(-0.000, 

-0.344) 

0.929 

15 

(-0.000, 

-0.344) 

0.713 

5% 

35 

(0.292, 

0.220) 

0.963 

15 

(-0.000, 

-0.344) 

0.42 

15 

(-0.000, 

-0.344) 

0.306 

24 

(0.033, 

-0.650) 

0.787 

15 

(-0.000, 

-0.344) 

0.965 

15 

(-0.000, 

-0.344) 

0.937 

15 

(-0.000, 

-0.344) 

0.745 

10% 

31 

(0.203, 

-0.268) 

0.993 

31 

(0.203, 

-0.268) 

0.4 

15 

(-0.000, 

-0.344) 

0.305 

18 

(0.698, 

-0.254) 

0.702 

15 

(-0.000, 

-0.344) 

0.982 

31 

(0.203, 

-0.268) 

0.962 

31 

(0.203, 

-0.268) 

0.767 

15% 

15 

(-0.000, 

-0.344) 

0.948 

15 

(-0.000, 

-0.344) 

0.34 

15 

(-0.000, 

-0.344) 

0.294 

41 

(0.308, 

-0.724) 

0.707 

15 

(-0.000, 

-0.344) 

0.844 

15 

(-0.000, 

-0.344) 

0.847 

15 

(-0.000, 

-0.344) 

0.636 

20% 

29 

(-0.078, 

-0.1250 

0.987 

28 

(-0.203, 

-0.284) 

0.38 

28 

(-0.203, 

-0.284) 

0.291 

10 

(-0.243, 

-0.486) 

0.713 

29 

(-0.078, 

-0.1250 

0.873 

29 

(-0.078, 

-0.1250 

0.938 

28 

(-0.203, 

-0.284) 

0.665 

25% 

15 

(-0.000, 

-0.344) 

0.937 

15 

(-0.000, 

-0.344) 

0.42 

15 

(-0.000, 

-0.344) 

0.304 

32 

(-.0.349, 

-0.375) 

0.684 

15 

(-0.000, 

-0.344) 

0.932 

15 

(-0.000, 

-0.344) 

0.859 

15 

(-0.000, 

-0.344) 

0.749 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

“Simplicial and spatial depths” allow contamination up to 15% and are similar to point depth (measure of location). 

Other systems do not support depth, and although data contamination is more severe, they do not provide the same 

depth. 

Case 4: 

In this section results is based on simulation study. For this study, the data were simulated (n=100) from normal 

distribution, mean vector µ= (0, 0), and unit covariance matrix, Ʃ=I2. The various level of contaminations (mean vector, 

µ=(0,0) and unit covariance matrix, Ʃ=1.5I2) such as 0%, 1%, 2%, 5%, 10%, 20% and 25%, are considered and the 

obtained results are summarized in the table 3.6. 
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Table 3.6: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PRD 

0% 

67 

(-0.191, 

-0.219) 

0.967 

67 

(-0.191, 

-0.219) 

0.44 

67 

(-0.191, 

-0.219) 

0.277 

75 

(-0.215, 

0.325) 

0.671 

67 

(-0.191, 

-0.219) 

0.947 

67 

(-0.191, 

-0.219) 

0.899 

67 

(-0.191, 

-0.219) 

0.759 

1% 

67 

(-0.191, 

-0.219) 

0.968 

67 

(-0.191, 

-0.219) 

0.44 

67 

(-0.191, 

-0.219) 

0.278 

26 

(-0.017, 

-0.418) 

0.678 

67 

(-0.191, 

-0.219) 

0.955 

67 

(-0.191, 

-0.219) 

0.905 

67 

(-0.191, 

-0.219) 

0.767 

2% 

67 

(-0.191, 

-0.219) 

0.956 

67 

(-0.191, 

-0.219) 

0.42 

67 

(-0.191, 

-0.219) 

0.275 

67 

(-0.191, 

-0.219) 

0.676 

67 

(-0.191, 

-0.219) 

0.926 

67 

(-0.191, 

-0.219) 

0.879 

67 

(-0.191, 

-0.219) 

0.713 

5% 

67 

(-0.191, 

-0.219) 

0.966 

67 

(-0.191, 

-0.219) 

0.43 

67 

(-0.191, 

-0.219) 

0.277 

67 

(-0.191, 

-0.219) 

0.682 

67 

(-0.191, 

-0.219) 

0.946 

67 

(-0.191, 

-0.219) 

0.906 

67 

(-0.191, 

-0.219) 

0.780 

10% 

67 

(-0.191, 

-0.219) 

0.958 

67 

(-0.191, 

-0.219) 

0.43 

67 

(-0.191, 

-0.219) 

0.276 

36 

(0.578, 

-0.540) 

0.654 

67 

(-0.191, 

-0.219) 

0.928 

67 

(-0.191, 

-0.219) 

0.884 

67 

(-0.191, 

-0.219) 

0.757 

15% 

67 

(-0.191, 

-0.219) 

0.942 

67 

(-0.191, 

-0.219) 

0.44 

67 

(-0.191, 

-0.219) 

0.276 

50 

(-0.139, 

0.903) 

0.677 

67 

(-0.191, 

-0.219) 

0.931 

67 

(-0.191, 

-0.219) 

0.874 

67 

(-0.191, 

-0.219) 

0.729 

20% 

67 

(-0.191, 

-0.219) 

0.956 

82 

(-0.233, 

-0.239) 

0.42 

67 

(-0.191, 

-0.219) 

0.272 

2 

(-0.161, 

-0.291) 

0.678 

67 

(-0.191, 

-0.219) 

0.899 

67 

(-0.191, 

-0.219) 

0.894 

67 

(-0.191, 

-0.219) 

0.716 

25% 

67 

(-0.191, 

-0.219) 

0.981 

67 

(-0.191, 

-0.219) 

0.43 

67 

(-0.191, 

-0.219) 

0.277 

20 

(0.223, 

-0.127) 

0.661 

67 

(-0.191, 

-0.219) 

0.941 

67 

(-0.191, 

-0.219) 

0.933 

67 

(-0.191, 

-0.219) 

0.715 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

It is observed that, “Mahalanobis, Halfspace, Simplicial, Spatial, Zonoid, Projection depths” tolerates upto 25% amount 

of contaminations and gives the same deepest point (measure of location).  

3.3.3 Location and Scale Contamination 

Case 5:    

In this section results have been generated based on simulation study. For this study, the data were simulated (n=50) 

from normal distribution, mean vector µ= (0, 0), and unit covariance matrix, 2I= . The various level of 

contaminations (mean vector, µ=(4,4) and unit covariance matrix, )251 I.=  such as 0%, 1%, 2%, 5%, 10%, 15%, 

20% and 25% are considered and the obtained results are summarized given below. 
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Table 3.7: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PRD 

0% 

24 

(0.092, 

0.022) 

0.988 

24 

(0.092, 

0.022) 

0.44 

24 

(0.092, 

0.022) 

0.306 

18 

(0.202, 

0.177) 

0.727 

24 

(0.092, 

0.022) 

0.975 

24 

(0.092, 

0.022) 

0.939 

24 

(0.092, 

0.022) 

0.793 

1% 

24 

(0.092, 

0.022) 

0.978 

24 

(0.092, 

0.022) 

0.44 

24 

(0.092, 

0.022) 

0.305 

39 

(0.007, 

0.433) 

0.752 

24 

(0.092, 

0.022) 

0.942 

24 

(0.092, 

0.022) 

0.939 

24 

(0.092, 

0.022) 

0.731 

2% 

24 

(0.092, 

0.022) 

0.970 

24 

(0.092, 

0.022) 

0.44 

24 

(0.092, 

0.022) 

0.306 

48 

(0.434, 

0.282) 

0.742 

24 

(0.092, 

0.022) 

0.966 

24 

(0.092, 

0.022) 

0.915 

24 

(0.092, 

0.022) 

0.776 

5% 

24 

(0.092, 

0.022) 

0.935 

24 

(0.092, 

0.022) 

0.4 

24 

(0.092, 

0.022) 

0.299 

24 

(0.092, 

0.022) 

0.729 

24 

(0.092, 

0.022) 

0.898 

24 

(0.092, 

0.022) 

0.876 

24 

(0.092, 

0.022) 

0.699 

10% 

50 

(0.513, 

0.229) 

0.970 

24 

(0.092, 

0.022) 

0.38 

24 

(0.092, 

0.022) 

0.299 

25 

(0.749, 

0.578) 

0.731 

24 

(0.092, 

0.022) 

0.868 

50 

(0.513, 

0.229) 

0.867 

24 

(0.092, 

0.022) 

0.644 

15% 

50 

(0.513, 

0.229) 

0.989 

45 

(0.528, 

0.319) 

0.32 

45 

(0.528, 

0.319) 

0.283 

18 

(0.202, 

0.177) 

0.739 

50 

(0.513, 

0.229) 

0.829 

50 

(0.513, 

0.229) 

0.958 

38 

(0.007, 

0.433) 

0.570 

20% 

50 

(0.513, 

0.229) 

0.981 

50 

(0.513, 

0.229) 

0.36 

50 

(0.513, 

0.229) 

0.299 

50 

(0.513, 

0.229) 

0.743 

50 

(0.513, 

0.229) 

0.926 

50 

(0.513, 

0.229) 

0.945 

24 

(0.092, 

0.022) 

0.613 

25% 

3 

(0.997, 

1.107) 

0.999 

50 

(0.513, 

0.229) 

0.380 

50 

(0.513, 

0.229) 

0.296 

50 

(0.513, 

0.229) 

0.732 

50 

(0.513, 

0.229) 

0.930 

3 

(0.997, 

1.107) 

0.985 

50 

(0.513, 

0.229) 

0.652 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

It is observed that, “Mahalanobis and zonoid depth” tolerates upto 5%, “halfspace, simplicial, spatial and projection 

depth” tolerates upto 10% of contaminations.  Simplicial volume depth does not performs well even if low level of 

contaminations.  

Case 6: 

This section presents the results of a simulation study. For this study, the data were simulated (n=100) from normal 

distribution, mean vector µ= (0, 0), and unit covariance matrix, 2I= . The various level of contaminations (mean 

vector, µ=(4,4) and unit covariance matrix, )251 I.=  such as 0%, 1%, 2%, 5%, 10%,15%, 20% and 25% are 

considered and the obtained results are summarized in the following table. 
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Table 3.8: Measure of location and the associated depth value under various data depth procedures 

Error MD HSD SD SVD SPD ZD PD 

0% 

57 

(0.025, 

0.027) 

0.995 

57 

(0.025,  

0.027) 

0.4 

39 

(0.144, 

-0.118) 

0.274 

91 

(-0.070,    

0.431) 

0.687 

39 

(0.144, 

-0.118) 

0.916 

57 

(0.026,  

0.027) 

0.956 

39 

(0.144, 

-0.118) 

0.756 

1% 

48 

(0.596, 

0.119) 

0.999 

68 

(0.689, 

-0.955) 

0.41 

39 

0.144, 

-0.118) 

0.274 

80 

(-0.012, 

-0.375) 

0.761 

39 

(0.144, 

-0.118) 

0.921 

48 

(0.596,  

0.119) 

0.992 

68 

(0.689, 

-0.956) 

0.761 

2% 

57 

(0.025, 

0.027) 

0.996 

57 

(0.025, 

 0.027) 

0.42 

39 

(0.144,  

-0.118) 

0.276 

28 

(-0.054, 

 0.250) 

0.720 

39 

(0.144, 

-0.118) 

0.933 

57 

(0.025,  

0.027) 

0.981 

39 

(0.144, 

-0.118) 

0.775 

5% 

35 

(0.248, 

0.065) 

0.989 

39 

(0.144,  

-0.118) 

0.44 

39 

(0.144, 

-0.118) 

0.277 

36 

(0.019,  

0.257) 

0.739 

39 

(0.144,  

-0.118) 

0.946 

35 

(0.248,  

0.065) 

0.950 

39 

(0.144, 

-0.118) 

0.832 

10% 

83 

(0.779, 

0.713) 

0.974 

36 

(0.248,  

0.065) 

0.42 

36 

(0.248, 

0.065) 

0.276 

60 

(0.495,  

0.138) 

0.754 

36 

(0.248,  

0.065) 

0.947 

36 

(0.248,  

0.065) 

0.905 

36 

(0.248,  

0.065) 

0.812 

15% 

26 

(0.019, 

0.257) 

0.978 

57 

(0.025,  

0.027) 

0.46 

57 

(0.025, 

0.027) 

0.278 

4 

(0.359, 

-0.011) 

0.749 

57 

(0.025,  

0.027) 

0.987 

57 

(0.025,  

0.027) 

0.946 

57 

(0.025,  

0.027) 

0.946 

20% 

18 

(0.727, 

1.152) 

0.973 

96 

(-0.017, 

0.162) 

0.41 

36 

(0.019, 

0.257) 

0.272 

35 

(0.248,  

0.065) 

0.707 

36 

(0.019,  

0.257) 

0.894 

83 

(0.779,  

0.713) 

0.900 

36 

(0.019,  

0.257) 

0.774 

25% 

83 

(0.779, 

0.713) 

0.759 

83 

(0.779, 

0.713) 

0.6 

60 

(0.495,  

0.138) 

0.265 

36 

(0.019,  

0.257) 

0.774 

35 

(0.248,  

0.065) 

0.895 

83 

(0.779, 

0.713) 

0.936 

68 

(0.689, 

-0.956) 

0.662 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

It should be noted that very deep, “Simplicial and Spatial” allow a certain amount of pollution and give the same score 

as deep (measure of location). Other systems do not support depth, and although data contamination is severe, they do 

not provide a very reliable depth point. 

In summary, halfspace, simplicial, spatial and projection depth performs well in the context (i) location contaminations, 

(ii) scale contaminations and (iii) location and scale contaminations. Specifically, halfspace and projection depth 

equally performs well when compared to other depth procedures.   

4.  Application in Discriminant Analysis 

The applicability of data depth procedures is explored through discriminate analysis using real data. This approach is 

compared to the calculation of misclassification probabilities. 

 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 1995-2015 

https://publishoa.com 

ISSN: 1309-3452 

 

2007 

Case 1: (Two groups) 

Description: The hemophilia data (Habemma et al. (1974)) (Appendix: A9) contains two measured variables ( 1X = 

log10 (AHF activity) and 2X = log10 (AHV antigen)) on 75 women, belonging to two groups: n1=30 (normal group) 

and n2= 45 (obligatory carries). The 53rd observation is identified as outlier through distance-distance plot (figure 4.1). 

The Discriminant analysis was performed under various depth procedures under with and without outliers. The deepest 

points and misclassification probabilities are summarized in the table 4.1 and 4.2 respectively. The depth contours plots 

of discrimination under various procedures are presented in appendix (Appendix: A3 and A4). 

 

Figure 4.1:  Distance-Distance Plots (with/without outliers) (hemophilia data) 

Table 4.1: Measure of location and the associated depth value under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PRD 

With 

outlier 

51 

(-0.2447, 

-0.0407) 

0.998097 

55 

(-0.2154, 

-0.0219) 

0.44 

55 

(-0.2154, 

-0.0219) 

0.286161 

55 

(-0.2154, 

-0.0219) 

0.670173 

55 

(-0.2154, 

-0.0219) 

0.941833 

51 

(-0.2447, 

-0.0407) 

0.977317 

55 

(-0.2154, 

-0.0219) 

0.782035 

Without 

outlier 

55 

(-0.2154, 

-0.0219) 

0.993265 

55 

(-0.2154, 

-0.0219) 

0.438356 

55 

(-0.2154, 

-0.0219) 

0.288314 

20 

(-0.2015, 

-0.0498) 

0.686374 

55 

(-0.2154, 

-0.0219) 

0.960403 

55 

(-0.2154, 

-0.0219) 

0.950385 

55 

(-0.2154, 

-0.0219) 

0.778241 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

Table 4.2Computed misclassification probabilities under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PD 

With outlier 0.2057 0.1486 0.1408 0.2394 0.1408 0.2057 0.1486 

Without outlier 0.1507 0.1268 0.0986 0.2057 0.0986 0.1268 0.1268 
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From the table above it can be seen that HSD and PD have the same depth point when considering maximum scale 

depth with and without outliers. Each method works equally well with other methods. When comparing 

misclassification probabilities, all higher ratios performed better except for “Mahalanobis and the Simplicial data depth 

method”. 

Case 2: (Three groups) 

Description: A real dataset is considered, namely the anorexia dataset (Hand et al. 1993) (Appendix: A12). The dataset 

consists of 3 groups, each group containing two variables with a base of 72 observations. Data on weight change in 

young anorexic patients. There are two variables, prewt (weight of patients before the study period) and postwt (weight 

of patients after the study period), classified into three groups, namely Cont (control), CBT (cognitive-behavioural 

therapy) and FT (family therapy). The 41st and 64th observations are identified as outlier through distance-distance plot 

(figure 4.2). The Discriminant analysis was performed under various depth procedures under with and without outliers. 

The deepest points and misclassification probabilities are summarized in the table 4.3 and 4.4 respectively. The depth 

contours plots of discrimination under various procedures are presented in appendix (Appendix: A5 and A6). 

 

Figure 4.2:  Distance-Distance Plots (with/without outliers) (anorexia data) 

Table 4.3: Measure of location and the associated depth value under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PRD 

With 

outlier 

43 

(83.3, 

85.4) 

0.970367 

51 

(83.3, 

85.2) 

0.388889 

51 

(83.3, 

85.2) 

0.280818 

22 

(84.4, 

84.7) 

0.685654 

51 

(83.3, 

85.2) 

0.880519 

51 

(83.3, 

85.2) 

0.91338 

51 

(83.3, 

85.2) 

0.701694 

Without 

outlier(64) 

51 

(83.3, 

85.2) 

0.985547 

39 

(81.3, 

82.4) 

0.4 

51 

(83.3, 

85.2) 

0.283084 

29 

(81.5, 

81.4) 

0.699589 

51 

(83.3, 

85.2) 

0.886203 

39 

(81.3, 

82.4) 

0.939106 

39 

(81.3, 

82.4) 

0.700296 

. – Observation number;  ( . ) – Location;  Bold – Depth value 

Table 4.4Computed misclassification probabilities under various data depth procedures 

Methods MD HSD SD SVD SPD ZD PD 

With outlier 0.4930 0.4930 0.4507 0.5352 0.4507 0.5070 0.5352 

Without outlier 0.4853 0.4627 0.4328 0.4930 0.4328 0.4853 0.4507 
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From the above table the comparison of average probability of misclassification values in the above table, simplicial 

and spatial Depth performs better than the other methods. Since these two procedures gives low misclassification 

probabilities when compared with other data depth procedures. 

In summary, “halfspace, projection, spatial and simplicial depth” provides low misclassification rate under with and 

without outliers when compared to other depth procedures such as “Mahalanobis, zonoid and simplicial volume depth”.  

 5. Conclusion 

 Local measurement is one of the most important concepts in statistical analysis. At this time, there is room for great 

information to be considered as a good metric for doing some analysis and for understanding the data. Over the past 

couple of years, many statistical methods have been advanced for estimating the spatial level, while the process of 

known depth is the newest method for determining a fixed location by observing the deepest data point in the cloud. In 

this context, this dissertation demonstrates the various concepts of information processing that have been introduced 

recently. To do this, he studied the situation by collecting real and simulated data in an environment. Moreover, the 

application of these processes to the most profound numerical studies has been carried out in the context of 

discrimination analysis. 

Most widely used data depth procedures have been reviewed in this dissertation such as “Mahalanobis Depth, Half 

space Depth, Simplicial Depth, Simplicial Volume Depth, Zonid Depth and Spatial Depth”.  The performance of these 

depth procedures has been studied under real data set and simulated environment. Among all depth procedures, 

halfspace and projection depth is recommended because of its remarkable properties, for example robustness, affine 

invariance, maximality at center, monotonicity relative to deepest point, vanishing at infinity, etc. Further it is noted 

that, though depth procedures work well in certain situations and in the context of their formulation, the depth 

procedures namely, halfspace, projection, simplicial and spatial depth performs more efficient than other discussed 

depth procedures. These procedures tolerate certain amount of abnormal observations in the data set. Further, in the 

context classification problems, these procedures give less misclassification error rate when compared with other depth 

procedures.  

The study reveals that the half space and projection depth perform equally good and more efficient than other depth 

procedures. The research communities can get more accuracy while using these procedures in order to find the good 

location by identifying the deepest point in a data cloud, instead of using conventional measure of location. Since, 

measure of location and scale estimates find numerous applications to statistical inference and multivariate data 

analysis, data depth are geometric in nature, the study can be further explored in this context. Also, the future research 

may be carried out using robust statistics in data depth and vice versa, since the robust statistics and data depth are less 

influenced by abnormal observations. We can apply these proceduresin multivariatedata analysis techniques and helpful 

in the field of basic Sciencesresearch communities. Fortunately, computers with increasing processing power and larger 

memory is available now, which is good for the researcher and future of data depth. 

References 

[1] Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the   Americal Statistical 

Association 91 862–872. 

[2] Dyckerhoff, R., Koshevoy, G., and Mosler, K. (1996). Zonoid data depth: theory and computa-tion. In: Prat A. 

(ed), COMPSTAT 1996. Proceedings in computational statistics, Physica-Verlag (Heidelberg), 235–240. 

[3] Hubert, M.and VanDriessen,K.(2004). Fast and RobustDiscriminant Analysis.  ComputaionalStatistics andData 

Analysis,45,301-320. 

[4] Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions Annals of Statistics 25 1998–

2017. 

[5] Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics 18 405–414. 

[6] Liu, R.Y. (1992). Data depth and multivariate rank tests. In: Dodge, Y. (ed.), L1-Statistics and Related Methods, 

North-Holland (Amsterdam), 279–294. 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 1995-2015 

https://publishoa.com 

ISSN: 1309-3452 

 

2010 

[7] Liu, R.Y. J.M. Parelius and K. Singh (1999), Multivariate analysis by data depth: Descriptive Statistics, Graphics 

and Inference. The Annals of Statistics, 27, 783-858. 

[8] Liu, X. and Zuo, Y. (2014). Computing projection depth and its associated estimators. Statistics and Computing 24 

51–63. 

[9] Mahalanobis, P. (1936). On the generalized distance in statistics. Proceedings of the National Academy India 12 

49–55. 

[10] Mahadevan, G. and Renuka, K. (2019), [1,2]-Complementary Connected Domination Number of Graphs-III, 

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, 68, 2298-2312. 

[11] Maria Raquel Neto. The Concept of Depth In Statistics. Depth Article Paper. 

[12] Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics & Probability Letters 1 327–332. 

[13] Serfling, R. (2006). Depth functions in nonparametric multivariate inference. In: Liu, R., Serfling, R., Souvaine, D. 

(eds.), Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, American 

Mathematical Society, 1–16. 

[14] Subba Reddy, Ch. Yookesh, TL. and Boopathi Kumar, E. (2022), A Study On Convergence Analysis Of Runge-

Kutta Fehlberg Method To Solve Fuzzy Delay Differential Equations. Journal of Algebraic Statistics, 13(2), 2832-

2838.  

[15] Tukey, J.W. (1975). Mathematics and the picturing of data. In: Proceeding of the International Congress of 

Mathematicians, Vancouver, 523–531. 

[16] Vardi, Y. and Zhang, C. (2000), “The Multivariate L_1 Median and Associated Data Depth”, Proceedings of the 

National Academy of Science USA, 97, 1423-1426. 

[17] Zuo, Y.J. and Serfling, R. (2000). General notions of statistical depth function. The Annals of Statistics 28 461–

482. 

[18] Zuo, y. (2003). Projection-based depth functions and associated medians, The Annals of statistics, 31, 1460-1490. 

 

A1:Scatter Plot and Depth contoursunder various depth procedures (with outliers)(cardata90) 
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A2:Scatter Plot and Depth contoursunder various depth procedures (without outliers)(cardata90) 
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A3:Depth contourswith classification under various depth procedures (with outliers) (hemophilia data) 
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A4: Depth contours with classification under various depth procedures (without outliers) (hemophilia data) 
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A5: Depth contourswith classification under various depth procedures (with outliers) (anorexia data)
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A6:Depth contourswith classification under various depth procedures (without outliers)(anorexia data) 

 

 

 


