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ABSTRACT

In the current era influential users are increasers rapidly. The detection influential users is critical task between researcher.
In this research work proposed a technique through which we can identified influential users. The presented research work
illustrate that in some of early studies influential users in the social networks were determined using topology as well as
characteristics of networks. In this paper categorize the influential users on the basis of their belongingness (product
/category wise). This will facilitate reach-ability of the product information to interested/ related customers. This
categorization will help the telemarketing companies to target influential users of the category for their product
advertisement in more intensive manner so as to get tremendous response from product related customers.
Keywords—social networks, polarity, classification, tweets, sentiment analysis, data pre-processing, twitter dataset
and influencer.

I. INTRODUCTION
Twitter is a very well-known social networking station and platform which gives access to people across the globe to
create micro-blog about an expansive and wide range of topics. It is a very easy way to express our views and it facilitates
individuals across the globe to connect with various users and they can also connect with their followers to publish their
views and thoughts[1]. There is a limit of words while doing tweets. The tweets are restricted to 140 words and that is why
the tweets from various users are referred to as micro-blogs which simply means that tweets are considered as a mini blogs
because there is a 140 character/words limit and if it exceeds twitter won’t allow you to post it will delete the post
automatically[2]. This function is imposed by Twitter for every tweet. This function makes the tweet of individual precise
and accurate and this lets the users present his thoughts and views with only a few words. Now the question is what we do
and why you need us the objective and aim of our attempt and work is to automatically classify incoming tweets by different
people across the globe into different categories so that clients are not overwhelmed by the unrefined data[3]. This is chiefly
useful when Twitter is accessed via hand held procedures like smart phones. To post a tweet on different topics and
sentiments you need to first make a twitter account[4]. Twitter account will give you an access to show your sentiments
and views on various topics and sentiments. So that makes difficult for individuals in choosing data from the tweet[5]. In
addition, tweets on Twitter tend to have free and sometimes unstructured words. Some are about learning and education,
economics, technology and science, health and fitness, beauty and others. Some are positive, neutral or negative tweets.
Twitter, every second on an average, 500 million tweets per day this is just an average and almost around 200 billion tweets
per year, approximately 6,000 tweets are squeeze on Twitter, which react and give response to all over 350,000 tweets
conveyed on an average[6]. Twitter has become an amazing platform for people who want to publicize their image by
using social networking platform especially for industries, factories as well as singular who have a powerful and sound
social, political or economic interest in maintaining and elevating their influence in the market and reputation. Sentiment
examination is a type of investigation which is having the procedure and structure of naturally identifying whether a
wording and substance of the content section contains a passionate or emotional substance to what extent, and it can besides
decide the content's extremity and its degree[7]. Sentiment examination is a process that is usually adopted to identify the
continuous behavior running on current social media and investigation gives these affiliations the capacity to screen diverse
internet based life destinations continuously[8]. Twitter post emotions and sentiment is further categorized in different
types such as Twitter sentiments chart intends to sort the sentiment limit of a tweet as positive, negative, or impartial.
Tweets are regularly made on different emotions by various individuals, and inadequately requested sentences, words,
phrases, technique and unequal articulations, not well-shaped writings, and here and there non-word reference terms. An
evolution and development of pre-handling (e.g., expelling, Uniform Resource Locator, supplanting refutations) before
highlight choice is applied to diminish the measure of clamour in the tweets. Initial is performed intensively in existing
approaches, particularly in Machine learning (ML) -supported approaching. On the other hand, few studies and
investigation concentrate on the consequence of per-processing technique on the performance of Twitter feeling
investigation.[9].
1.1 Characteristics of Tweets
Twitter content and messages have many exclusive and unique types of attributes, which distinguishes and differentiate
the contents and the tweets according to the subsequent type of base which are tweeted by the individuals of the application
of the twitter[11][12][13].
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o Data availability: Another categorization is the amount and significance of data accessible. It is very
uncomplicated and easy to accumulate millions of tweets with the assistance of Twitter API, for guidance and
education purpose and assessment. In past study and analysis, tests only consisted of thousands of training
functions.

e Domain; Those individuals who are utilizing twitter post short messages on a variety of topics and sentiments
dissimilar to other sites which are tailored to a specific topic. This is unlike from a great percentage of precedent
research and investigation, which concentrates on specific domain such as movie review and many more.

e Language model: Twitter user tweets messages and content from various media, including their laptop and cell
phones. The velocity and rate of recurrence of misspellings used in the content and texts and slang in tweets is
greater and higher than in any other domains.

e Length: The greatest length of a Twitter message is 140 characters and it is restricted by twitter policy. From our
preparation set, we grabbed the data from the previous records. We examine and calculate that the standard length
of a tweet is between 14 words or 78 words apporx. This is not similar to the earlier emotion and sentiment
research that concentrate on summarizing and classifying vast bodies of work, for example movie reviews[16].

1.2 Modern Methods of Classifying Texts

Conventionally, the methods and techniques utilized for the summarization and classification of texts and content are only
of two types such as positive or negative, but completely, there are frequently 5 types of technique and method of text and
content in which a tweet can make by user of the twitter accounts[17][18].

o Positive: If the complete matter is expressing a positive feeling that the whole tweet content has a
positive/excited/energized/cheerful methodology and conduct or if something is referenced in the substance of the
content with positive undertones. Only the positive behavior transferred by the publisher of the tweet more than
one inclination and sentiment is communicated in the substance of the tweet distributed by the client however the
positive sentiment is progressively predominant and having a higher impact than the negative one. For Example:
"After spending half of my life in Mumbai India then | moved to Canada[19].

o Negative: If the complete content and matter of the post are expressing something negative that the whole
substance of the tweet has a negative/discouraging/pitiful/disappointed conduct and performance or if something
is referenced in the tweet of the substance with negative undertones. Moreover, if more than one preference and
feeling is communicated in the substance of the tweet however the negative feeling is progressively higher and
prevailing than the positive. For Example: "'l want a new sports car now this Maruti is boring "[20].

e Ambiguous: If there is a merge of different emotions and that more than one emotion or feeling is communicated
and appeared in the content of the common tweets which are consistently solid with no alteration and changes and
specific notion and feelings sticking out and getting progressively understandable by users. Moreover if in case it
is reasonable that some individual and the individual view is being communicated here but since of the absence
of reference to the setting of the tweet, it is troublesome/difficult to correctly unravel the supposition and feelings
communicated. For Example: "I sort of like legends who play heroes and don't care for it at the equivalent."” taking
everything into account if the system of the tweet isn't clear from the data and substance accessible. For Example:
“That’s what accurately how I experience about avengers "hahaha”[21].

e Neutral/Objective: If in case if the creator and designer of the substance of tweet communicate no private and
individual conclusion/emotions/feelings in the substance and content of the tweet and just transmit data with
showing the actual motive and views. Promotions of different merchandise and items would be named under this
class [21].
1.3 Modelling Patterns on Tweet
Formal Language Based

Language based functions are those that helps in handling and dealing with formal linguistics. It ultimately
comprises of previous sentiment which were expressed and emotions the extreme level emotions of users of individual
substance and matter in the content, words and states, and different areas of language labeling of the substance. A few
words in the substance and expressions have an ordinary fundamental tendency and learning for imparting demanding and
plain suppositions/feelings generally that is the thing that earlier opinion extremity implies. For instance "hateful and devil"
has a solid negative implication while "incredible™ has a solid positive meaning. So every time a sentence or statement with
positive meaning is victimized in the tweet, there are more possibilities that comprehensive string of words of the tweet
would pass on a positive estimation. Then again, Parts of Speech labeling is a grammatical procedure to the issue. Sample
and similar pattern of the content can be taken out from analyzing and estimating the occurrence allocation of these sections
of the tweet (either independently or communally with some other section of content) in an exacting set and group of
labeled tweets. It simply means to robatically recognize which sections and parts of the content of tweet each individual
and user word of a word string consist to such as noun, verb, adjective, verb etc[22].
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1.4 Classification of Texts
e Long Texts
A long test refers to anything longer than a few words or a small amount of dozen characters: body text, lengthy
embedding code, data tables, and so on. Ordinary text is better suited to short snippets of text: a private name, a
company tagline, a desired color. Generally, the long texts are named as the paragraphs where every point of the
appropriate subject is discussed which cannot be completed in short kind of text[23].

e Short Texts
Short Text simply denoted that the content is precise and its a short proclamation and these types of tweets are
normally under 200 characters in length, for example, “cell phone SMS setting, online visit records and some blog
remarks. They distinguish three highlights in a short instant message: sparsity, promptness, and words with
unrecognizable configuration. Sparsity are a types of tweets that are very short and it refers as a short book that
contains scarcely any words and makes data extraction sometimes hard. Promptness or immediacy simply denote
those messages that are produced progressively. With the expansion in prominence of online correspondence like
voice notes as well as text messages, rich data can be mined from brief discussion between gatherings of
individuals[24].
1.5 API (Application Programming Interface)
Twitter is all about newspaper and it helps in providing information of what’s going in the current world and what
individual in the current circumstances and situation are talking about. There are two ways to access twitter after making
a twitter account. These are web browser and your maobile phone. An individual will be able to access Twitter via the web
browser or your mobile phone. Twitter is a best way to share personal opinion and thoughts. To post your views and
thoughts on Twitter is extensively possible; we also give big organization, planners and web developers, and individual
with programmatic access via our APIs (application programming interfaces) for Twitter information. This article is written
to provide you the complete information about API. This article demonstrates about the protocols and laws of Twitter’s
APIs are, what data and information is made obtainable through them, and what policies we need to follow and few of the
protections Twitter imposed on the individual for their utilization[25]. Computer programmer has a different way to
communicate with each other. At a higher and better quality level of interaction and communication, APIs is a means
through which computer programs “communicates” to each other. This interaction between them is very essential with the
goal that they can transmit solicitation and offer data. This is finished by allowing a PC programming application to
distinguish what's called as an endpoint: a specific location that compares with a point by point sort of information and
data we offer (endpoints are typically selective and one of a kind like various numerical code or telephone numbers).
Twitter award access to areas of our look at through APIs to allow individuals to fabricate programming that fuses with
Twitter, similar to a goals that helps an association which answer to customer remark and input on Twitter[26]. As
compared to the various data and information shared on different platform Twitter data is exclusive and unique because it
reveals the data and information that client and individual prefer to share on their twitter account publicly. Our API software
is a type of platform that permits the broad access to public Twitter information that individual has preferred to share across
the globe with the help of twitter account. We also maintain software in APIs that permit individual to control and maintain
their own confidential Twitter data (For example Direct Messages) and give this data to web developers whom they have
certified and allowed to do so[27].
Il. LITERATURE REVIEW
Maria Gintova, [2019] In this research work authors presented that around the world and transversely to various levels of
administration and government authority Social media is being accepted and adopted as a quick pace by governments.
Local and municipal governments in Canada, federal, produced an account on social media in 2000s and are at this moment
utilizing them to act together with the public. Studies to date though, concentrate first and foremost on social media
techniques and performance of management organizations while administration social media individuals' performances
and viewpoints continue understudied. This investigation and learning estimate knowledge of administration and
government social media influencers and how they work together on social media platforms like Twitter and Facebook
accounts managed by a Canadian federal government organization — Immigration, Refugees and Citizenship Canada
(IRCC). Deep investigation has been done and it also discovered and surveyed why a person prefer to cooperate and talk
on social media platform as well as their point of view. The discovery advocates that Canadian immigration organization
and agencies are utilizing social media platform as a client services instrument, and some of the migrant social media
individuals are turning to administration social media to listen to honestly from the management agencies and are
anticipating modified responses.[1]. Anuja Arora, [2019], In this work author presented a stated that the expansion of online
E platform application’s entirely altered the way people work together and act with each other, talk and connect for some
purpose. These social media applications and platforms play a significant responsibility in assisting superior outreach and
pressure. This learning intended a method and technique for computing the influencer across the globe. This will also index
across well-liked social media applications and platforms for examples Instagram and other social media plat-from such as
Facebook. A group of functions that conclude consequence on the users are represented utilizing a regression formulation.
The fundamental appliance discovering new method comprises four types of techniques such as Ordinary Least Squares,
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KNN Regression and support vector regression representations are adopted to calculate a collective mark in a period of
user and influencer index. Searching out that specify that commitment, outreach, reaction, as well as development plan of
action a significant task in crucial the users. In addition, the collection of the four models which are mentioned above end
result in the peak accuracy of 93.7% pursued by the KNN regression with 93.6%. The learning has suggestions transversely
to an assortment of domains of ecommerce, viral marketing, social media advertising and trademark administration wherein
classification of input information propagators is important. These types of users and influencer indices may in advance be
used by e-commerce entrance and brand name for the principle of social media endorsement and commitment for better
outreach [2]. Airo Hino,[2019] author presentedthe increasing reputation and fame of social media application’s posts,
outstandingly Twitter shared feeds and posts, as a information and statics supply for social science investigate poses key
problems in regard to entrance to influencers and representative, very premium-quality statistics for investigation. Low-
priced, widely obtainable information and data such as that has taken out from Twitter's free relevance programming hubs
is frequently of low class and the quality of that is worse, while high-quality statistics is exclusive both economically and
computationally. Furthermore, information is regularly accessible only in real-time, building post-hoc investigation tricky
or unworkable. We recommend and experiment a tactic for reasonably producing a documentation of Twitter information
through residents sampling, yielding a record that is extremely representative of the subjected individual population (in
this examination case, the complete residents of Japanese-language Twitter individuals). Evaluating the tweet dimensions,
keywords, subjects and matters found in our model information and data set with the ground reality of Twitter's complete
information feed established a very elevated scale of representativeness in the model. We finish it with an end though that
this come up to yields a statistics set that is appropriate for an extensive range of post-hoc investigation, while outstanding
cost effectual and accessible to an extensive variety of scholars and researchers[4].

1HI.PROPOSED WORK
In our work first of all we start from data collection process from twitter to a local csv file. The data which is stored in csv
file will be pre-processed for data cleaning after that further tweets are processed or filter from word cloud in the category
of sports and politics for that we have used Boolean retrieval approach, after that we did sentiment analysis [26] of tweets
and further by calculating average no of favorites counts and retweet counts and those user has above average these values
can be treated as influencer in that category.
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Figure 3.1Working Methodology
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we retrieved tweets from twitter account and for the same we required a valid twitter credentials so, for the same we have
created a valid account in twitter with my gmail account and that credentials are used to fetch data from twitter. Twitter
data is commonly available; in order to approach those data we need to make an app that interacts with Twitter API [28 ].
The very initial step was to register the app we created [30].

Step 1: Creation and Registration of credentials in twitter for fetching data

e twitter.com/app/ne

w¥ Application Management

Create an application

Application Details

o Developer Agreement

€@ Yes, | have read and agree to the Twitter Developer Agreement.

Greate your Twitter application

Figure3.2App is created for interaction with Twitter streaming
Python’s API for Twitter, named ‘tweepy’, which provides libraries for streaming twitter data, is used. We have extracted
data in the category of politics and sports.

Software and Technology

The software and technologies that were utilized in this paper work are as follows:

Table 1 Technologies Used

Software Version Function

Twitter API 1.1 To Collect tweets showing sentiment
towards ‘politics ,sports ’

Python IDLE 3.6 To implement python script to perform
Twitter Streaming API

Tweepy 3.3.0 To allow python to communicate with
Twitter API

Spacy 2.0.5 Import English and stop words

wordcloud 1.6.0 To make keywords for filtration

Tweets were filtered and parsed which included the term ‘sports’ and ‘politics’and which showed some sentiment value
towards it. Then streaming twitter's posts were stored to a Comma Separated Values (.csv) file format. This CSV file was

loaded into python for further analysis.

User

User makes

reguest

HTTP server
process

Server pulls
processed result
from data store

and renders
view

Streaming connection Twitter
process

Server opens
streaming

Receives
streamed
Tweets,
performs
processing and
stores result

grara ey W .

B s T e

Connection
closes

Figure 3.3 User interaction with Twitter streaming API
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A database of approx. 30k -40k approx tweets is used for analysis. The text of the tweet was stored in a CSV file in year
2019 while it was streaming. A snhapshot of CSV file containing tweets is shown below:
Figure 3.4 snapshot of politics tweets
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25 2019-07-14 05:13%2; This erickiat Workd Cup? Trafaigar Squans 1003y X pic twitter com/AodNsySTXE";: L 150133091455270045" httos./ twitter, com,07Sarah My status/1 15018509 1499270185

Figure 3.5 Snapshot of sports tweets

In step 2,3 and 4 we want to know the sentiment of the tweets and for that we do sentiment analysis of tweet . The approach
to extract sentiment from tweets is as follows:

(i) Start with downloading and caching the sentiment dictionary

(i) Download twitter testing data sets, input it in to the program.
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(iii) Clean the tweets by removing the stop words.

(iv) Tokenize each word in the dataset and feed in to the program.

(v) For each word, compare it with positive sentiments and negative sentiments word in the dictionary. Then
increment positive count or negative count.

(vi) Finally, based on the positive count and negative count, we can get result percentage about sentiment to
decide the polarity

For example:

e ‘T love #hrithik so much, cant wait to see his film” When we want to find the tweets above the hero Hrithik. Let us
consider the above tweet as the retrieved data . Now we apply the sentiment function to the above tweet.The word
“Love” in the above tweet is a positive word . So the score of the tweet would be +1.

e “I abhor @hrithik movies. When we want to find the tweets above the hero Hrithik. Let us consider the above tweet as
the retrieved data . Now we apply the sentiment function to the above tweet.The word “abhor” in the above tweet means
negative word. So the score of tweet would be -1.

e 7T love #hrithik so much, but I abhor his movies.” Let us consider this tweet as the retrieved data ,

Now let us apply the sentiment function on the above tweet. The word “sports” and “politics” are positive and
negative words in the above tweet. So the score of the tweet would Zero.

In short after extraction data from twitter we have to pre-process the data:

Pre processing:

Unstructured to structured

Misspelling, non-traditional grammar correction
Change corpus to lower-case

Change corpus to Plain Text

Eliminate Punctuations

Eliminate Stop words

Stem document or sentence

@+ooooTw

Step2: Remove stopwords , punctuation, emoticons, special characters from the data.

When working with literary substance mining applications, we much of the time know about the expression "stop words"
or "stop state list" or even "stop list". Stop phrases are essentially an arrangement of ordinarily utilized expressions in any
dialect, now not just English.

Step3: fetch filtrations data from data transform object model Word Cloud to calculate matching score and filter out tweets
those are below threshold of mactching score required to get influencial users. tweet score = No of keywords matched in
WordCloud

WordClouds:

"politics' ["government”, "campaign”, "delegate"”, "expedition”, "incumbent"”, "politics”, "indian", "bjp", "congress",
"india", "polrtrcal" "party" "poll”, "suicide", "majorrty" "vote", "election”, "parlrament" "constrtuency" "candidates”,
"constituent”, "prime"”, "minister”, "cabinet","mp"”, "manifesto”, "affairs”, "deliberative”, "liberal”, "democratic",
"politicize", "offrce" "failure", "modr" "gandhi"]

"sports™: ["athletics”, "sport", "competition”, "indian", "india", "game", "racing"”, "gymnastics", "soccer”, "football",
sportsman" "offside", "cyclrng" "tennis", “cricket", "captain”, "bcci", "icc","run", "team", "archery", "baseball"”, "frisk",

"coach”, "champion”, "chess", "english", "field","gameday", "olympics", "snowboard", "league”, "plan", "stadium",
"world", playground”, "hockey", "pitch", "court", "fitness", "venue", "event", "employment"],

cup”,

INdilia modi olltlcal-lndlah

Votjog:g r@ Srr]p F_gpar A g n

m
e affairs rnlnlster

1 O
go,\/gﬁgnme al=
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ﬂ

Fig 3.6 Word Cloud for politics category
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Fig 3.7 Word Cloud for sports category

event

Step4: Find sentiment from the tweet text and categorize into either negative tweet or positive tweet. Also calculate
polarity and subjectivity of tweet to update in pipeline.
A Sentiment Analyzer is a tool to implement and facilitate Sentiment Analysis tasks using NLTK features and classifiers,
especially for teaching and demonstrative purposes.A Sentiment Analysis tool based on machine learning approaches.
Exclusive Classification Methods Used on Twitter
it can be seen that several algorithms are often used in short  or twitter text classification analysis, namely,

e  Support Vector Machine (SVM),
Naive Bayes (NB),
Multinominal Naive Bayes (MNB),
k-Nearest Neighbor (k-NN),
Decision Tree (DT). But the most widely used algorithm available literature is Support Vector Machine (SVM)
which is 25 literature.

Frequently Used Classification Methods

Figure 3.8 Frequently Used Classification Methods.

Step5:

Find most influenctial users based on different criterias like most favorites counts, retweet counts, influence type, profiling
etc.
We find average no of favorites counts and retweet counts and those user has above average these attributes will be tagged
into influential users category.

IV.SIMULATION AND RESULT

In this section we first plot the graph between tweet with re-tweets and favorites count and than we use different classifiers
to get best classification algorithm for our proposed work and after that getting threshold value from tweets with the help
of re-tweets and favorites count we get the influencer users in sports and politics category.

4.1 Result

We can see various results in the category of sports and politics:
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SPORTS
Below graph shows comparison between sports Tweet vs retweets, its shows high range between tweet id’s between 130

to 200 .

Tweelt vws Retweets

S000 1

OO0

J0D00

Retweets

2000

1000 A

T T
O 50 100 10 200 250
Tweeat Id

Graph 4.1 In this graph y-axis shows re-tweets of a particular Sports-Tweet and in x-axis we can see the tweet id
for which we can see re-tweet in y-axis.
Below graph shows comparison between sports Tweet vs favorites (here favorites means likes), its shows high range

between tweet id’s between 130 to 200 .
Tweest vs favorites
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T T
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Graph 4.2 In this graph y-axis shows favourites or likes of a particular Sports-Tweet and in x-axis we can see the
tweet id for which we can see favorites in y-axis.

Below graph shows comparison between sports re-tweet vs favourites (here favorites means likes).
retweets vs favorites

A0000
35000 4
30000 4
25000 4

20000

favarites

15000
10000
5000

0

T T T T T T T
o 1000 2000 3000 4000 5000 =rulale] 000
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Graph 4.3 In this graph y-axis shows favourites or likes of a particular sports- re-tweets and in x-axis we can see
the re-tweets for which we can see favourites in y-axis.

2321



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 2313 - 2327
https://publishoa.com

ISSN: 1309-3452

Below graph shows positive sentiments vs negative sentiments of people towards sports.

Megative

Paositive

Fig. 4.4 Above Pie chart shows positive and negative sentiments of tweets in sports category
A Social influencer define as: A Social Media Influencer is a user on social media who has established credibility in a
specific industry. A social media influencer has access to a large audience and can persuade others by virtue of their
authenticity and reach.
Below graph shows top influencers on the basis of retweets who influenced more people in the category of sports.

Top Influencers

5000

4000 1

3000 A

Etweets

2000

10040

gilly381

angry_rantman
Zakirism
daniel8&cricket
Azad Umar
bhogleharsha
joybhattachar]
KhurramParvez
ghmermkhan

gautamvermaZ3

Fig. 4.5 This bar graph shows the top influencers in the category of sports and x-axis shows the influencer name
and y-axis shows the re-tweet of that influencer.

Below graph shows top influencers on the basis of favourites who influenced more people in the category of sports.
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Fig. 4.6 This bar graph shows the top influencers in the category of sports and x-axis shows the influencer name
and y-axis shows the favourites of that influencer.

Politics
Below graph shows comparison in category of politics between Tweet vs Retweets,its shows high range between tweet
id’s between 315 to 515 .
Twest ws Retweets

TO0d A
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4000

Retweets

3000

2000
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o

T T
O 100 200 300 A0 500
Twveet Id

Fig. 4.7 In this graph y-axis shows retweets of a particular politics-tweet and in x-axis we can see the tweet id for
which we can see favourites in y-axis.
Below graph shows comparison in category of politics between Tweet vs Favourites,its shows high range between tweet
id’s between 315 to 515 .
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Fig. 4.8 In this graph y-axis shows favourites or likes of a particular politics-tweet and in x-axis we can see the tweet
id for which we can see favourites in y-axis.

Below graph shows comparison between politics retweet vs favourite.
retweets vs favorites
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Graph 4.9 In this graph y-axis shows favourites or likes of a particular politics- re-tweets and in x-axis we can see
the re-tweets for which we can see favourites in y-axis.
Below graph shows positive sentiments vs negative sentiments of people towards politics.

‘gatlw
Positive

Fig. 4.10 Above pie chart shows positive and negative sentiments of tweets in politics category
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In the below graph shows top influencer who re-tweet on politics mostly. In the x axis show the different influencer and Y
axis denote that number of retweets.

Top Influencers

FOO0
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Swamy39
majorgauravarya
shkarmBHANDARI
theskindoctorl3
rssurjewala
greatbong
free_thinker
MehboobaMufti
ramprasad_c

Fig. 4.11 This bar graph shows the top influencers in the category of politics and x-axis shows the influencer name
and y-axis shows the re-tweet of that influencer.

In the below graph shows top influencer who liked posts on politics categories mostly. In the x axis show the different
influencer and Y axis denote that number of favorites.
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Fig. 4.12 This bar graph shows the top influ-e_ncers in the category of politics and x-axis shows the influencer name
and y-axis shows the favorite of that influencer.

Comparing Different models

Below graph represent text based accuracy comparison over different classification techniques .1t was found that accuracy
was highest for the Naive Bayes. In the x axis shows the different methods and Y axis shows the accuracy of different
methods. In the below figure 4.10 shows that Naive Bayes method better result as compare to other methods.
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Fig. 4.10 This bar graph shows the comparison between different classification algorithms for twitter data and in

y-axis we can see the accuracy of different algorithms which is clearly visible in x-axis.

V. CONCLUSION

Itis clearly evident from the earlier mentioned experiments and results that in our case Naive Bayes classification algorithm
has given more accurate result as compare to TF_IDF,Count Vectorization, Logistic Regression and SVC classification
algorithms. This is very easy to find the influencer user in the sports and political category by using our approach and at
the same time this will be very useful for the industries people to identify the influencer people in their respective category
.Further it can be used by the industries people to enhance the reachability of their products to the potential users directly.
In future enhancement our approach can be applied in different categories like movies, entertainment etc and at the same
time the volume of data can be increased means classification algorithms performance can be evaluated when data cannot
be stored in a single system or the volume of data is more than we can get more precise meaning of the data and the
perception of more people from twitter data
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