
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2798

Multi Objective Resource Scheduling for Cloud Environment using Ant

Colony Optimization Algorithm

Mufeed Ahmed Naji Saif 1, Abhinava Karantha K1, S K Niranjan1, Belal Abdullah Hezam Murshed2,3

1Department of Computer Applications, Sri Jayachamarajendra College of Engineering, VTU, Mysore, India.

3Department of Studies in Computer Science, University of Mysore, Mysore, India,
4Department of Computer science, College of Eng. & IT, University of Amran, Amran, Yemen.

1mufeed.a.nsaif@gmail.com, 1abhinavkarantha98@gmail.com, 1 sriniranjan@yahoo.com,
2belal.a.hezam@gmail.com

1https://orcid.org/0000-0002-0399-6339, 2https://orcid.org/0000-0003-2187-5044

Abstract: Cloud computing enables efficient resource sharing among several cloud users to run

their applications and fulfill the business requirements. Despite the numerous advantages of cloud

computing, the heterogeneity, uncertainty, and dynamic nature of user workload complicate the

allocation and scheduling of cloud resources. However, improper resource allocation and

scheduling result in resource waste and delays the execution of user tasks, which may volatile the

Service Level Agreement (SLA). Hence, efficient resource scheduling techniques are highly

desirable to maximize resource utilization and ensure efficient execution of user tasks with

maintained SLA. In this Article, a multi-objective resource scheduling method is implemented to

address the resource scheduling problem in a container-based cloud environment using Ant Colony

Optimization algorithm (ACO). This method aims at maintaining a balance between resource

utilization and efficient execution of user tasks with minimal time and cost. To evaluate the

implemented method, three scenarios were conducted on ContaienrCouldSim toolkit. The

experimental analysis reported that the implemented method archives high resource utilization

while minimizing the makespan and execution cost in all the scenarios.

Keywords: Cloud Computing, Resource Allocation, Resource Scheduling, Container Scheduling,

Ant Colony Optimization, metaheuristic.

1. Introduction

Cloud computing is an emerging computing technology that allows instant access to a pool of

virtualized computing resources through the internet on-demand basis. These resources are

allocated and de-allocated dynamically based on cloud users' demands. Virtualization has powered

the cloud environment by creating virtual instances of cloud physical resources to utilize the

resources and minimize the deployment cost [17]. This has enticed cloud users to deploy their

applications, such as (big data and Internet-of-Things, etc.) by offering virtualized computational

resources such as containers or virtual machines (VMs). Most existing resource scheduling

techniques deploy VM instances for every task, requiring maximum start-up time, resulting in high

execution times and costs. However, containers are an alternative lightweight virtualized

component that has low start-up time to address the problems of high start-up time in VMs based

models [1].

Cloud computing has offered the pay-per-use option to the users for utilizing its resources and

services, cloud providers provision various services (infrastructure, software, and platform) to the

cloud users with instant access and high scalability. Therefore, it is essential to meet the Quality-

of-Service (QoS) constraints in order to maintain Service-Level Agreements (SLAs) and satisfy

mailto:mufeed.a.nsaif@gmail.com
mailto:abhinavkarantha98@gmail.com
mailto:sriniranjan@yahoo.com
mailto:belal.a.hezam@gmail.com
https://orcid.org/0000-0002-0399-6339
https://orcid.org/0000-0003-2187-5044

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2799

the users' requirements [5]. However, providing high-quality dedicated cloud services and

maintaining the SLA constraints is a challenging task in cloud computing. It is the primary concern

in existing cloud service models, managing the cloud resources and satisfying the user

requirements [19]. Cloud providers need to dynamically allocate large-scale cloud virtual

resources to millions of cloud users, without violating SLA and high profit. whereas cloud users

need to get their required cloud services at a low cost [6]. Reaching the cloud user satisfaction

while maintaining the cloud provider profit, and tackling both objectives is a challenging task. To

address this problem, there is a need for multi-objective resource allocation and scheduling

techniques to achieve both the cloud providers' and cloud users’ objectives

Resource allocation and scheduling in cloud computing are the primary tasks of cloud resource

managers. Efficient resource scheduling leads to high resource utilization and less cost. Resource

scheduling is an NP problem. Meta-heuristics optimization algorithms are a good tool to deal with

such problems. Currently, many researchers have adopted metaheuristics optimization algorithms

to address resource allocation and scheduling in cloud computing such as [2, 11, 12, 20, 22, 23,

24]. These multi-objective scheduling techniques are limited to VM based deployment model. To

this extent, still few research have considered container-based deployment model, therefore, this

research work mainly focusses on addressing the multi-objective resource scheduling in container-

based cloud environment using ACO algorithm.

In this article, we implement ACO for addressing the resource scheduling problem in a container-

based cloud environment. It is a probabilistic and uncertain global optimization algorithm, which

can easily get the global optimal solution. The primary objective of this method is to maintain a

balance between resource utilization and the efficient execution of user tasks with minimal time

and cost. The main contribution of this article is implementing ACO for multi-objective resource

scheduling in a container-based cloud environment and evaluating this algorithm on

ConatinerCloudsim to analyze its performance in terms of makespan, resource utilization, and

execution cost.

The rest of this article is organized as the following: Sect. II reviews the related work. Sect. III

describes the implemented algorithm. In Sect. IV the experimental results and analysis are

presented. Finally, Sect. V. concludes the study.

2. Related work

This section briefly describes some of the existing research works related to multi-objective ACO

algorithms in cloud computing. To this extent, Malekloo et al. [11] adapted ACO to address the

multi-objective optimization problem for VM placement in cloud datacenter with the objective to

minimize the energy consumption, resource wastage, and the energy communication cost. Zhu et

al. [23] adapted ACO to address the problem of multi-objective optimization based on load

balancing and VM placement with an objective to reduce the total resource wastage and power

consumption. Ashraf et al. [2] adapted multi-objective ACO for VM consolidation in cloud data

centers with the objective to minimize over-provisioning of PMs by consolidating VMs on under-

utilized PMs and minimize the number of VM migrations. Pham et al. [14] adapted ACO to

address the problem of multi-objective resource allocation in cloud computing with the objective

to minimize the energy consumption and balance the load of physical machines.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2800

Reddy et al. [16] adapted a modified ACO for task scheduling to address a multi-objective problem

improving the performance of task scheduling by reducing makespan. Ming et al. [13] utilized

multi-targeted ACO for multi-tenant SaaS service dynamic selection in a cloud environment with

an objective to save energy and deployment cost and archive load balancing target. Jia et al. [8]

proposed an adaptive workflow scheduling approach based on ACO considering the deadline of

the task with an objective to reduce cost and execution time. Xu et al. [22] utilized ACO algorithm

for efficient VM allocation based on an improved PM selection strategy to the basic ACO to avoid

premature convergence or falling into the local optima, achieving efficient load balancing and

maximizing the resource utilization. Malekloo et al. [12] suggested an energy and QoS aware

multi-objective ACO technique for VM placement and consolidation to balance the trade-off

between system performance, energy efficiency, and SLA compliance.

Reddy et al. [15] suggested a task scheduling method using a modified ACO algorithm for

minimizing the makespan. Lin et al. [10] adapted a multi-objective ACO for scheduling

microservice on cloud containers considering the utilization, number of requests, storage

resources, and failure rate. Wei et al. [20] proposed an improved ACO with an adaptive parameter

setting for balancing its fast convergence and robust search capability, ensuring efficient VM

placement with an objective to minimize the communication cost and energy consumption over

traffic-aware Data Center Network (DCN).

Bindu et al. [3] developed a scheduling approach using ACO for reducing energy, cost, and time.

Wei et al. [21] suggested a task scheduling method using improved ACO for a cloud environment.

The proposed method aims at searching for the optimal solution for task scheduling to avoid falling

into local optimum and considering three objectives: minimizing the waiting time, the degree of

load balancing, and the cost of task completion. Huang et al. [7] presented an approach based on

ACO for service replicas placement considering scheduling multi-objective: deployment cost and

latency.

From the aforesaid detailed literature review related to ACO based resource allocation and

scheduling, it can be observed that most of these techniques are intended for VM-based could

model, and less attention has been given to resource scheduling in a container based cloud

environment. In this research, we aim at analyzing the efficiency of ACO for secluding the

resources in a container-based cloud environment.

3. Methodology

This section describes the implemented algorithm for resource scheduling in container-based cloud

computing environment.

3.1 Optimal Resource Allocation

The container is the main component in container-based cloud environments, which has the

responsibility of executing user tasks. User task has to be effectively scheduled on appropriate

container to ensure an efficient execution of user tasks. The required containers for executing the

user tasks can be represented by 𝐶 = {𝑐1, 𝑐2, 𝑐𝑚} whereas the users’ tasks can be represented

by 𝑇 = {𝑡1, 𝑡, 𝑡𝑛}. The primary goal of scheduling strategy is enabling an efficient execution

of user tasks while meeting both cloud users and providers objectives. it is critical to

simultaneously reduce the make-span and execution cost while increasing the resource utilization

rate to satisfy both cloud users and providers.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2801

𝑖

Resource Utilization: it identifies the number of resources utilized executing a user task. This

algorithm focusses on maximizing the resource utilization rate. The mathematical formulation for

resource utilization can be given as follows:

Max 𝑟𝑒𝑠_𝑢𝑡𝑖𝑙 =

𝑛
𝑖=1 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑖)

(1)

𝑚𝑎𝑥 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙)

Make-Span: it refers to the completion time of the final task submitted by the users. It is the overall

taken time between the submission and execution of the task. Make-span can be obtained using

the following formula:

Min 𝑀𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙) (2)

where, 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙) represents the finish time or the completion time of final task.

Execution Cost: It is computed by multiplying the price of the instance of container with the

computed response time.

Min 𝑒𝑥𝑒_ 𝑐𝑜𝑠 𝑡 = ∑𝑛 (𝐹𝑡(𝑡𝑖) − 𝑃𝑡(𝑡𝑖) − 𝑆𝑡(𝑡𝑖)) × 𝑃𝐶 (3)
𝑖=1 𝑖

where, 𝑃𝐶 represents the price of the containers’ instance subjected to run the 𝑖𝑡ℎtask.

3.2 Ant Colony Optimization Algorithm (ACO)

ACO is a metaheuristic algorithm that simulates ant behavior when foraging for food, it can be

used to address complex optimization problems. It mimics the behavior of real ant colonies, which

communicate via pheromone trails. They leave pheromones on the path while moving to find a

food source. Perceiving the pheromone helps other ants in following the trails to the food source.

Most ants choose the shortest path because it has a higher concentration of pheromones. The ACO

is adaptable and robust [4]. It can be used for efficient resource scheduling. Here, we briefly

describe the basic concepts of ACO applied to converge the decision of container maximining the

resource utilization, minimizing the makespan and execution cost. The steps of ACO are described

below:

Parameters Initialization: Initially, the required parameters are set; and pheromone trails are

initialized. Then, on path segments, the virtual trail is accumulated. Then, ACO constructs ant

solutions by moving the ants with probability of the pheromone’s concentration. Then the

pheromone is updated

Initialize Pheromone: the ants are distributed randomly, then, the pheromone values are

initialized:

Τi(0) = pNUMi × pMIPSi + Conbi (4)

where Con is a container, pNUMi number of Coni processor pMIPSi million instructions per second

of every Coni processor Conbi Coni communication bandwidth capability.

Selecting the container for upcoming task: For the upcoming task, Coni is selected by k-ant with

probability, when the containers are overloaded, it becomes bottleneck which directly influences

the given task by which the makespan get increased.

∑

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2802

Local and global pheromone update: let τi (Tp) at any time T be the Coni pheromone intensity.

The update of pheromone is formulated as in the Eq [9].

τi (T +1) = (1- ρ) × τi(T) +Δτi (5)

Where ρϵ½ [0, 1] decay coefficient of pheromone trail. The previous solution impact will be low

when value of 𝜌 is high. When the ant finishes its tour, the local pheromone on container visited

and Δτi value can be updated by:

𝛥𝑟𝑖 = 1 𝑡̸𝑖𝐾 (6)

Where tiK K-ant searched shortest path length at ith iteration

If the ant finds the current optimal solution while completing its tour, a higher intensity pheromone

is laid on its path while updating the global pheromone on containers visited, and 𝛥𝑟𝑖 value can be

given as:

𝛥𝑟𝑖 = 𝑑 ̸𝑡𝑜𝑝 (7)

Where top is the current optimal solution and d is the encouragement coefficient

Algorithm 1 ACO

1 Initialize the pheromone value

2 Optimal =null (initialize the best path to null)

3 Initialize the ants

4 For every ant

5 For all the paths

6 determine the value of pheromones on every path

7 End for

8 Best = Compute the fitness function (ants)

9 If (Best < Optimal)

10 Optimal = best //determine the shortest path

11 End If

12 Update the local pheromone (6)

13 Update the global pheromone (7)

14 Repeat until the condition is satisfied.

15 Return the optimal solution (best path)
 16 End for

4. Results and discussions

To evaluate the efficiency and performance of the ACO algorithm, simulation analysis is

conducted on ContainerCloudsim simulation toolkit. We have conducted three scenarios A, B, and

C, in the first scenario A, we have created 10 containers, 10 hosts, and 20 Virtual machines VMs,

in the second scenario B we have created 50 containers, 10 hosts, and 20 VMs, and in the third

scenario C 50 containers, 10 hosts and VMs have been created. Specifications of the VMs and

other setup parameters are shown in table 1.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2803

Table1. Cloudsim setup parameters

Entity Type Parameters Scenario A Scenario B Scenario C

Container Number of containers 10 25 50

Cloudlet
The number of cloudlets 25 - 150 25 - 150 200 - 1000

Length 1000 – 10000

Host

Number of hosts 10

RAM 512MB

Storage 10000

Bandwidth 1000

Virtual

Machine

Number of VMs 20

Policy ACO

RAM 512MB

Size 1000

VMM Xen

OS Linux

Number of CPUs 2

Datacenter Number of datacenters 2

For the experimental analysis, in the first (A) and second (B) scenarios 25-150 clouldlets with

random lengths from 1000 to 10,000. In the third scenario (C) 200-800 clouldlets with random

lengths from 1000 to 10,000. Running the three scenarios we have obtained the following results

as shown in table 2:

Table 2 Obtained experimental results:

No. of

containers
Workload

Execution

Cost
Resource Utilization Makespan SLA

 25 40.23 41.21 1749.86 0.002

 50 54.20 57.56 1814.31 0.005

10
75 60.32 76.17 2069.96 0.006

100 72.27 89.19 2256.25 0.012

 125 81.33 98.86 2399.46 0.023
 150 93.38 112.93 2579.16 0.035

 25 42.73 59.76 1154.11 0.006

 50 51.89 67.42 1213.98 0.011

25
75 68.32 91.00 2467.64 0.020

100 73.11 103.16 1622.53 0.033

 125 81.65 109.18 1791.72 0.045
 150 96.38 125.13 1968.34 0.052

 200 94.31 130.19 830.01 0.063

 400 102.31 156.44 886.55 0.087

50 600 110.38 178.54 973.76 0.098

 800 119.32 189.23 1114.51 0.114
 1000 132.62 197.71 1223.21 0.124

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2804

100

80

60

40

20

0

25 50 75 100 125 150

Number of Cloudlets

120

100

80

60

40

20

0

25 50 75 100 125 150

Number of Cloudlets

140

120

100

80

60

40

20

0

200 400 600 800 1000

Number of Cloudlets

4.2 Execution Cost

For the evaluation of execution cost, we have executed the three scenarios and obtained the results

as shown in table 2. it has been observed that from Fig. 2 ACO algorithm obtained optimal results

in terms of execution cost in the first scenario (A) when the number of containers was 10 and the

number of cloudlets was 25, the optimal execution cost was 40.23, whereas in the second scenario

(B) when the number of containers was 25, the optimal execution cost was 42.73 when the number

of cloudlets was 25. But in the third scenario (C) with the number of containers was 50, the optimal

execution cost was 94.31 when the cloudlets were 200.

Scenario A (10) Containers

Scenario B (25) Containers

Scenario C (50) Containers

Fig. 2 Execution Cost Vs Number of Cloudlets

4.2 Resource Utilization

For the evaluation of resource utilization, we have executed the three scenarios and obtained the

results as shown in table 2. it has been observed that from Fig. 3 ACO algorithm obtained

optimal results in terms of resource utilization in the first scenario (A) when the number of

Ex
ec

u
ti

o
n

 C
o

st

Ex
e

cu
ti

o
n

 C
o

st

Ex
ec

u
ti

o
n

 C
o

st

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2805

120

100

80

60

40

20

0

25 50 75 100 125 150

Number of CLoudlets

160

140

120

100

80

60

40

20

0

25 50 75 100 125 150

Number of Cloudlets

250

200

150

100

50

0

200 400 600 800 1000

Number of Cloudlets

containers was 10 and the number of cloudlets was 25, the optimal utilization was 41.21,

whereas in the second scenario (B) when the number of containers was 25, the optimal utilization

was 59.76 when the number of cloudlets was 25. But in the third scenario (C) with the number of

containers being 50, the optimal utilization was 130.19 when the cloudlets were 200.

Scenario A (10) Containers Scenario B (25) Containers

Scenario C (50) Containers

4.3 Makespan

Fig. 3 Resource Utilization Vs Number of Cloudlets

For the evaluation of makespan, we have executed the three scenarios and obtained the results as

shown in table 2. it has been observed that from Fig. 4 ACO algorithm obtained optimal results

in terms of makespan in the first scenario (A) when the number of containers was 10 and the

number of cloudlets was 50, the optimal makespan was 1749.86, whereas in the second scenario

(B) when the number of containers was 25, the optimal makespan was 1154.11when the number

R
e

so
u

rc
e

 U
ti

liz
at

io
n

R
es

o
u

rc
e

 U
ti

liz
at

io
n

R
es

o
u

rc
e

Uti

liz
at

io
n

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2806

3000

2500

2000

1500

1000

500

0

25 50 75 100 125 150

Number of Cloudlets

2500

2000

1500

1000

500

0

25 50 75 100 125 150

Number of Cloudlets

1400

1200

1000

800

600

400

200

0

200 400 600 800 1000

Number of Cloudlets

of cloudlets was 25. But in the third scenario (C) with the number of containers being 50, the

optimal makespan was 830.01 when the cloudlets were 200.

Scenario A (10) Containers Scenario B (25) Containers

Scenario C (50) Containers

4.2 SLA Violation

Fig. 4 Makespan Vs Number of Cloudlets

For the evaluation of SLA violation, we have executed the three scenarios and obtained the results

as shown in table 2. it has been observed that from Fig. 4 ACO algorithm obtained optimal results

in terms of SLA violation in the first scenario (A) when the number of containers was 10 and the

number of cloudlets was 25, the optimal SLA violation was 0.002, whereas in the second scenario

(B) when the number of containers was 50, the optimal SLA violation was 0.006 when the number

of cloudlets was 25. But in the third scenario (C) with the same number of containers, the optimal

SLA violation was 0.063 when the cloudlets were 200.

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2807

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

25 50 75 100 125 150

Number of Cloudlets

0.06

0.05

0.04

0.03

0.02

0.01

0

25 50 75 100 125 150

Number of Cloudlets

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

200 400 600 800 1000

Number of Cloudlets

Scenario A (10) Containers Scenario B (50) Containers

Scenario C (50) Containers

Fig. 5 SLA Violation Vs Number of Cloudlets

The findings significantly showed that employing the ACO allocation algorithm achieves better

performance, it optimally obtained 40.23 in terms of execution cost while the 41.21 resource

utilization and 1749.86 makespan with a minimum of 0.002 SLA violation. ACO algorithm

provides better quality and shows high performance with less execution cost, time, SLA violations,

and space complexity. ACO can be suggested as a powerful optimization technique and sufficient

for addressing the issues of resource scheduling in a cloud environment.

5. Conclusion

This paper implemented ACO multi-objective container resource scheduling in a cloud

environment, the article aimed at analyzing the use of ACO for optimizing multi-objective such as

the execution cost, resource utilization, makespan, and SLA violations. The experimental results

showed that ACO has performed well. Optimally obtained 830.01 in terms of makespan while it

got 75.61 for the resource utilization and 16.42 for the execution cost. In future work, we will

compare ACO with other optimization based container resource scheduling and allocation in the

SL
A

 V
o

ila
ti

o
n

s

SL
A

 V
o

ila
ti

o
n

s

SL
A

 V
o

ila
ti

o
n

s

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2808

cloud from the state-of-art of meta-heuristic algorithms to identify the most efficient and reliable

optimization algorithm for optimal resource scheduling in a cloud environment.

References

1. Adhikari, Mainak, and Satish Narayana Srirama. "Multi-objective accelerated particle swarm
optimization with a container-based scheduling for Internet-of-Things in cloud
environment." Journal of Network and Computer Applications 137 (2019): 35-61.

2. Ashraf, Adnan, and Ivan Porres. "Multi-objective dynamic virtual machine consolidation in the cloud

using ant colony system." International Journal of Parallel, Emergent and Distributed Systems 33,

no. 1 (2018): 103-120.

3. Bindu, G. B., K. Ramani, and C. Shoba Bindu. "Optimized resource scheduling using the meta

heuristic algorithm in cloud computing." IAENG International Journal of Computer Science 47, no.

3 (2020): 360-366.

4. Dorigo, Marco, and Thomas Stützle. "The ant colony optimization metaheuristic: Algorithms,

applications, and advances." In Handbook of metaheuristics, pp. 250-285. Springer, Boston, MA,

2003.

5. Donyagard Vahed, Nasim, Mostafa Ghobaei‐Arani, and Alireza Souri. "Multiobjective virtual

machine placement mechanisms using nature‐inspired metaheuristic algorithms in cloud

environments: A comprehensive review." International Journal of Communication Systems 32, no.

14 (2019): e4068.

6. Guo, Qiang. "Task scheduling based on ant colony optimization in cloud environment." In AIP

conference proceedings, vol. 1834, no. 1, p. 040039. AIP Publishing LLC, 2017.

7. Huang, Tiansheng, Weiwei Lin, Chennian Xiong, Rui Pan, and Jingxuan Huang. "An ant colony

optimization-based multiobjective service replicas placement strategy for fog computing." IEEE

Transactions on Cybernetics 51, no. 11 (2020): 5595-5608.

8. Jia, Ya-Hui, Wei-Neng Chen, Huaqiang Yuan, Tianlong Gu, Huaxiang Zhang, Ying Gao, and Jun

Zhang. "An intelligent cloud workflow scheduling system with time estimation and adaptive ant

colony optimization." IEEE Transactions on Systems, Man, and Cybernetics: Systems 51, no. 1

(2018): 634-649.

9. Lal, Arvind, and C. Rama Krishna. "Critical path-based ant colony optimization for scientific

workflow scheduling in cloud computing under deadline constraint." In Ambient Communications

and Computer Systems, pp. 447-461. Springer, Singapore, 2018.

10. Lin, Miao, Jianqing Xi, Weihua Bai, and Jiayin Wu. "Ant colony algorithm for multi-objective

optimization of container-based microservice scheduling in cloud." IEEE access 7 (2019): 83088-

83100.

11. Malekloo, Mohammadhossein, and Nadjia Kara. "Multi-objective ACO virtual machine placement

in cloud computing environments." In 2014 IEEE Globecom Workshops (GC Wkshps), pp. 112-

116. IEEE, 2014.

12. Malekloo, Mohammad-Hossein, Nadjia Kara, and May El Barachi. "An energy efficient and SLA

compliant approach for resource allocation and consolidation in cloud computing

environments." Sustainable Computing: Informatics and Systems 17 (2018): 9-24.

13. Ming, Cao, Yu Bingjie, and Liu Xiantong. "Multi-tenant SaaS deployment optimisation algorithm for

cloud computing environment." International Journal of Internet Protocol Technology 11, no. 3

(2018): 152-158.

14. Pham, Nguyen Minh Nhut, and Van Son Le. "Applying Ant Colony System algorithm in multi-

objective resource allocation for virtual services." Journal of Information and Telecommunication 1,

no. 4 (2017): 319-333.

15. Reddy, G. Narendrababu, and S. Phani Kumar. "MACO-MOTS: modified ant colony optimization

for multi objective task scheduling in Cloud environment." International Journal of Intelligent

Systems and Applications 11, no. 1 (2019): 73.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 2798 - 2809
https://publishoa.com

ISSN: 1309-3452

2809

16. Reddy, G., N. Reddy, and S. Phanikumar. "Multi objective task scheduling using modified ant

colony optimization in cloud computing." Int’l J. Intell. Eng. Sys 11, no. 3 (2018): 242-250.

17. Saif, Mufeed Ahmed Naji, S. K. Niranjan, and Hasib Daowd Esmail Al-Ariki. "Efficient autonomic
and elastic resource management techniques in cloud environment: taxonomy and
analysis." Wireless Networks 27, no. 4 (2021): 2829-2866.

18. Singh, Harvinder, Anshu Bhasin, and Parag Kaveri. "SECURE: Efficient resource scheduling by

swarm in cloud computing." Journal of Discrete Mathematical Sciences and Cryptography 22, no.

2 (2019): 127-137.

19. Vinothina, V., and R. Sridaran. "An approach for workflow scheduling in cloud using ACO." In Big

data analytics, pp. 525-531. Springer, Singapore, 2018.

20. Wei, Wenting, Huaxi Gu, Wanyun Lu, Tong Zhou, and Xuanzhang Liu. "Energy efficient virtual

machine placement with an improved ant colony optimization over data center networks." IEEE

Access 7 (2019): 60617-60625.

21. Wei, Xianyong. "Task scheduling optimization strategy using improved ant colony optimization

algorithm in cloud computing." Journal of Ambient Intelligence and Humanized Computing (2020):

1-12.

22. Xu, Peng, Guimin He, Zhenhao Li, and Zhongbao Zhang. "An efficient load balancing algorithm for

virtual machine allocation based on ant colony optimization." International Journal of Distributed

Sensor Networks 14, no. 12 (2018): 1550147718793799.

23. Zhu, Liwen, Ruichun Tang, Ye Tao, Meiling Ren, and Lulu Xue. "Multi-objective ant colony

optimization algorithm based on load balance." In International Conference on Cloud Computing

and Security, pp. 193-205. Springer, Cham, 2016.

24. Zuo, Liyun, Lei Shu, Shoubin Dong, Chunsheng Zhu, and Takahiro Hara. "A multi-objective

optimization scheduling method based on the ant colony algorithm in cloud computing." Ieee

Access 3 (2015): 2687-2699.

