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Abstract: Cloud computing enables efficient resource sharing among several cloud users to run 

their applications and fulfill the business requirements. Despite the numerous advantages of cloud 

computing, the heterogeneity, uncertainty, and dynamic nature of user workload complicate the 

allocation and scheduling of cloud resources. However, improper resource allocation and 

scheduling result in resource waste and delays the execution of user tasks, which may volatile the 

Service Level Agreement (SLA). Hence, efficient resource scheduling techniques are highly 

desirable to maximize resource utilization and ensure efficient execution of user tasks with 

maintained SLA. In this Article, a multi-objective resource scheduling method is implemented to 

address the resource scheduling problem in a container-based cloud environment using Ant Colony 

Optimization algorithm (ACO). This method aims at maintaining a balance between resource 

utilization and efficient execution of user tasks with minimal time and cost. To evaluate the 

implemented method, three scenarios were conducted on ContaienrCouldSim toolkit. The 

experimental analysis reported that the implemented method archives high resource utilization 

while minimizing the makespan and execution cost in all the scenarios. 

Keywords: Cloud Computing, Resource Allocation, Resource Scheduling, Container Scheduling, 

Ant Colony Optimization, metaheuristic. 

1. Introduction 

Cloud computing is an emerging computing technology that allows instant access to a pool of 

virtualized computing resources through the internet on-demand basis. These resources are 

allocated and de-allocated dynamically based on cloud users' demands. Virtualization has powered 

the cloud environment by creating virtual instances of cloud physical resources to utilize the 

resources and minimize the deployment cost [17]. This has enticed cloud users to deploy their 

applications, such as (big data and Internet-of-Things, etc.) by offering virtualized computational 

resources such as containers or virtual machines (VMs). Most existing resource scheduling 

techniques deploy VM instances for every task, requiring maximum start-up time, resulting in high 

execution times and costs. However, containers are an alternative lightweight virtualized 

component that has low start-up time to address the problems of high start-up time in VMs based 

models [1]. 

Cloud computing has offered the pay-per-use option to the users for utilizing its resources and 

services, cloud providers provision various services (infrastructure, software, and platform) to the 

cloud users with instant access and high scalability. Therefore, it is essential to meet the Quality- 

of-Service (QoS) constraints in order to maintain Service-Level Agreements (SLAs) and satisfy 
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the users' requirements [5]. However, providing high-quality dedicated cloud services and 

maintaining the SLA constraints is a challenging task in cloud computing. It is the primary concern 

in existing cloud service models, managing the cloud resources and satisfying the user 

requirements [19]. Cloud providers need to dynamically allocate large-scale cloud virtual 

resources to millions of cloud users, without violating SLA and high profit. whereas cloud users 

need to get their required cloud services at a low cost [6]. Reaching the cloud user satisfaction 

while maintaining the cloud provider profit, and tackling both objectives is a challenging task. To 

address this problem, there is a need for multi-objective resource allocation and scheduling 

techniques to achieve both the cloud providers' and cloud users’ objectives 

Resource allocation and scheduling in cloud computing are the primary tasks of cloud resource 

managers. Efficient resource scheduling leads to high resource utilization and less cost. Resource 

scheduling is an NP problem. Meta-heuristics optimization algorithms are a good tool to deal with 

such problems. Currently, many researchers have adopted metaheuristics optimization algorithms 

to address resource allocation and scheduling in cloud computing such as [2, 11, 12, 20, 22, 23, 

24]. These multi-objective scheduling techniques are limited to VM based deployment model. To 

this extent, still few research have considered container-based deployment model, therefore, this 

research work mainly focusses on addressing the multi-objective resource scheduling in container- 

based cloud environment using ACO algorithm. 

In this article, we implement ACO for addressing the resource scheduling problem in a container- 

based cloud environment. It is a probabilistic and uncertain global optimization algorithm, which 

can easily get the global optimal solution. The primary objective of this method is to maintain a 

balance between resource utilization and the efficient execution of user tasks with minimal time 

and cost. The main contribution of this article is implementing ACO for multi-objective resource 

scheduling in a container-based cloud environment and evaluating this algorithm on 

ConatinerCloudsim to analyze its performance in terms of makespan, resource utilization, and 

execution cost. 

The rest of this article is organized as the following: Sect. II reviews the related work. Sect. III 

describes the implemented algorithm. In Sect. IV the experimental results and analysis are 

presented. Finally, Sect. V. concludes the study. 

2. Related work 

This section briefly describes some of the existing research works related to multi-objective ACO 

algorithms in cloud computing. To this extent, Malekloo et al. [11] adapted ACO to address the 

multi-objective optimization problem for VM placement in cloud datacenter with the objective to 

minimize the energy consumption, resource wastage, and the energy communication cost. Zhu et 

al. [23] adapted ACO to address the problem of multi-objective optimization based on load 

balancing and VM placement with an objective to reduce the total resource wastage and power 

consumption. Ashraf et al. [2] adapted multi-objective ACO for VM consolidation in cloud data 

centers with the objective to minimize over-provisioning of PMs by consolidating VMs on under- 

utilized PMs and minimize the number of VM migrations. Pham et al. [14] adapted ACO to 

address the problem of multi-objective resource allocation in cloud computing with the objective 

to minimize the energy consumption and balance the load of physical machines. 
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Reddy et al. [16] adapted a modified ACO for task scheduling to address a multi-objective problem 

improving the performance of task scheduling by reducing makespan. Ming et al. [13] utilized 

multi-targeted ACO for multi-tenant SaaS service dynamic selection in a cloud environment with 

an objective to save energy and deployment cost and archive load balancing target. Jia et al. [8] 

proposed an adaptive workflow scheduling approach based on ACO considering the deadline of 

the task with an objective to reduce cost and execution time. Xu et al. [22] utilized ACO algorithm 

for efficient VM allocation based on an improved PM selection strategy to the basic ACO to avoid 

premature convergence or falling into the local optima, achieving efficient load balancing and 

maximizing the resource utilization. Malekloo et al. [12] suggested an energy and QoS aware 

multi-objective ACO technique for VM placement and consolidation to balance the trade-off 

between system performance, energy efficiency, and SLA compliance. 

Reddy et al. [15] suggested a task scheduling method using a modified ACO algorithm for 

minimizing the makespan. Lin et al. [10] adapted a multi-objective ACO for scheduling 

microservice on cloud containers considering the utilization, number of requests, storage 

resources, and failure rate. Wei et al. [20] proposed an improved ACO with an adaptive parameter 

setting for balancing its fast convergence and robust search capability, ensuring efficient VM 

placement with an objective to minimize the communication cost and energy consumption over 

traffic-aware Data Center Network (DCN). 

Bindu et al. [3] developed a scheduling approach using ACO for reducing energy, cost, and time. 

Wei et al. [21] suggested a task scheduling method using improved ACO for a cloud environment. 

The proposed method aims at searching for the optimal solution for task scheduling to avoid falling 

into local optimum and considering three objectives: minimizing the waiting time, the degree of 

load balancing, and the cost of task completion. Huang et al. [7] presented an approach based on 

ACO for service replicas placement considering scheduling multi-objective: deployment cost and 

latency. 

From the aforesaid detailed literature review related to ACO based resource allocation and 

scheduling, it can be observed that most of these techniques are intended for VM-based could 

model, and less attention has been given to resource scheduling in a container based cloud 

environment. In this research, we aim at analyzing the efficiency of ACO for secluding the 

resources in a container-based cloud environment. 

3. Methodology 

This section describes the implemented algorithm for resource scheduling in container-based cloud 

computing environment. 

3.1 Optimal Resource Allocation 

The container is the main component in container-based cloud environments, which has the 

responsibility of executing user tasks. User task has to be effectively scheduled on appropriate 

container to ensure an efficient execution of user tasks. The required containers for executing the 

user tasks can be represented by 𝐶 = {𝑐1, 𝑐2,            𝑐𝑚} whereas the users’ tasks can be represented 

by 𝑇 = {𝑡1, 𝑡,            𝑡𝑛}. The primary goal of scheduling strategy is enabling an efficient execution 

of user tasks while meeting both cloud users and providers objectives. it is critical to 

simultaneously reduce the make-span and execution cost while increasing the resource utilization 

rate to satisfy both cloud users and providers. 
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𝑖 

Resource Utilization: it identifies the number of resources utilized executing a user task. This 

algorithm focusses on maximizing the resource utilization rate. The mathematical formulation for 

resource utilization can be given as follows: 

 
Max 𝑟𝑒𝑠_𝑢𝑡𝑖𝑙 = 

 

𝑛 
𝑖=1 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑖) 

 
(1) 

𝑚𝑎𝑥 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙) 

Make-Span: it refers to the completion time of the final task submitted by the users. It is the overall 

taken time between the submission and execution of the task. Make-span can be obtained using 

the following formula: 

Min 𝑀𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙) (2) 

where, 𝑓𝑖𝑛𝑖𝑠ℎ𝑡(𝑤𝑓𝑖𝑛𝑎𝑙) represents the finish time or the completion time of final task. 

Execution Cost: It is computed by multiplying the price of the instance of container with the 

computed response time. 

Min 𝑒𝑥𝑒_ 𝑐𝑜𝑠 𝑡 = ∑𝑛   (𝐹𝑡(𝑡𝑖) − 𝑃𝑡(𝑡𝑖) − 𝑆𝑡(𝑡𝑖)) × 𝑃𝐶 (3) 
𝑖=1 𝑖 

where, 𝑃𝐶 represents the price of the containers’ instance subjected to run the 𝑖𝑡ℎtask. 

3.2 Ant Colony Optimization Algorithm (ACO) 

ACO is a metaheuristic algorithm that simulates ant behavior when foraging for food, it can be 

used to address complex optimization problems. It mimics the behavior of real ant colonies, which 

communicate via pheromone trails. They leave pheromones on the path while moving to find a 

food source. Perceiving the pheromone helps other ants in following the trails to the food source. 

Most ants choose the shortest path because it has a higher concentration of pheromones. The ACO 

is adaptable and robust [4]. It can be used for efficient resource scheduling. Here, we briefly 

describe the basic concepts of ACO applied to converge the decision of container maximining the 

resource utilization, minimizing the makespan and execution cost. The steps of ACO are described 

below: 

Parameters Initialization: Initially, the required parameters are set; and pheromone trails are 

initialized. Then, on path segments, the virtual trail is accumulated. Then, ACO constructs ant 

solutions by moving the ants with probability of the pheromone’s concentration. Then the 

pheromone is updated 

Initialize Pheromone: the ants are distributed randomly, then, the pheromone values are 

initialized: 

Τi(0) = pNUMi × pMIPSi + Conbi (4) 

where Con is a container, pNUMi number of Coni processor pMIPSi million instructions per second 

of every Coni processor Conbi Coni communication bandwidth capability. 

Selecting the container for upcoming task: For the upcoming task, Coni is selected by k-ant with 

probability, when the containers are overloaded, it becomes bottleneck which directly influences 

the given task by which the makespan get increased. 

∑ 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 2798 - 2809 
https://publishoa.com  

ISSN: 1309-3452 

 

2802 

 

Local and global pheromone update: let τi (Tp ) at any time T be the Coni pheromone intensity. 

The update of pheromone is formulated as in the Eq [9]. 

τi (T +1) = (1- ρ) × τi(T) +Δτi (5) 

Where ρϵ½ [0, 1] decay coefficient of pheromone trail. The previous solution impact will be low 

when value of 𝜌 is high. When the ant finishes its tour, the local pheromone on container visited 

and Δτi value can be updated by: 

𝛥𝑟𝑖 = 1 𝑡̸𝑖𝐾 (6) 

 

Where tiK K-ant searched shortest path length at ith iteration 
 

If the ant finds the current optimal solution while completing its tour, a higher intensity pheromone 

is laid on its path while updating the global pheromone on containers visited, and 𝛥𝑟𝑖 value can be 

given as: 

𝛥𝑟𝑖 = 𝑑 ̸𝑡𝑜𝑝 (7) 

Where top is the current optimal solution and d is the encouragement coefficient 
 

Algorithm 1 ACO 

1 Initialize the pheromone value 

2 Optimal =null (initialize the best path to null) 

3 Initialize the ants 

4 For every ant 

5 For all the paths 

6 determine the value of pheromones on every path 

7 End for 

8 Best = Compute the fitness function (ants) 

9 If (Best < Optimal) 

10 Optimal = best //determine the shortest path 

11 End If 

12 Update the local pheromone (6) 

13 Update the global pheromone (7) 

14 Repeat until the condition is satisfied. 

15 Return the optimal solution (best path) 
  16  End for  

 

4. Results and discussions 

To evaluate the efficiency and performance of the ACO algorithm, simulation analysis is 

conducted on ContainerCloudsim simulation toolkit. We have conducted three scenarios A, B, and 

C, in the first scenario A, we have created 10 containers, 10 hosts, and 20 Virtual machines VMs, 

in the second scenario B we have created 50 containers, 10 hosts, and 20 VMs, and in the third 

scenario C 50 containers, 10 hosts and VMs have been created. Specifications of the VMs and 

other setup parameters are shown in table 1. 
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Table1. Cloudsim setup parameters 

 
Entity Type Parameters Scenario A Scenario B Scenario C 

Container Number of containers 10 25 50 

Cloudlet 
The number of cloudlets 25 - 150 25 - 150 200 - 1000 

Length 1000 – 10000 

 
Host 

Number of hosts 10 

RAM 512MB 

Storage 10000 

Bandwidth 1000 

 

 

 
Virtual 

Machine 

Number of VMs 20 

Policy ACO 

RAM 512MB 
  

Size 1000 

VMM Xen 

OS Linux 

Number of CPUs 2 

Datacenter Number of datacenters 2 

 
For the experimental analysis, in the first (A) and second (B) scenarios 25-150 clouldlets with 

random lengths from 1000 to 10,000. In the third scenario (C) 200-800 clouldlets with random 

lengths from 1000 to 10,000. Running the three scenarios we have obtained the following results 

as shown in table 2: 

 
Table 2 Obtained experimental results: 

 
No. of 

containers 
Workload 

Execution 

Cost 
Resource Utilization Makespan SLA 

 25 40.23 41.21 1749.86 0.002 

 50 54.20 57.56 1814.31 0.005 

10 
75 60.32 76.17 2069.96 0.006 

100 72.27 89.19 2256.25 0.012 

 125 81.33 98.86 2399.46 0.023 
 150 93.38 112.93 2579.16 0.035 

 25 42.73 59.76 1154.11 0.006 

 50 51.89 67.42 1213.98 0.011 

25 
75 68.32 91.00 2467.64 0.020 

100 73.11 103.16 1622.53 0.033 

 125 81.65 109.18 1791.72 0.045 
 150 96.38 125.13 1968.34 0.052 

 200 94.31 130.19 830.01 0.063 

 400 102.31 156.44 886.55 0.087 

50 600 110.38 178.54 973.76 0.098 

 800 119.32 189.23 1114.51 0.114 
 1000 132.62 197.71 1223.21 0.124 
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4.2 Execution Cost 
 

For the evaluation of execution cost, we have executed the three scenarios and obtained the results 

as shown in table 2. it has been observed that from Fig. 2 ACO algorithm obtained optimal results 

in terms of execution cost in the first scenario (A) when the number of containers was 10 and the 

number of cloudlets was 25, the optimal execution cost was 40.23, whereas in the second scenario 

(B) when the number of containers was 25, the optimal execution cost was 42.73 when the number 

of cloudlets was 25. But in the third scenario (C) with the number of containers was 50, the optimal 

execution cost was 94.31 when the cloudlets were 200. 
 
 

 

 

 
Scenario A (10) Containers 

Scenario B (25) Containers 

 
 

          

          

          

          

          

          

          

 

 

 
Scenario C (50) Containers 

 

Fig. 2 Execution Cost Vs Number of Cloudlets 

 
4.2 Resource Utilization 

 

For the evaluation of resource utilization, we have executed the three scenarios and obtained the 

results as shown in table 2. it has been observed that from Fig. 3 ACO algorithm obtained 

optimal results in terms of resource utilization in the first scenario (A) when the number of 
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containers was 10 and the number of cloudlets was 25, the optimal utilization was 41.21, 

whereas in the second scenario (B) when the number of containers was 25, the optimal utilization 

was 59.76 when the number of cloudlets was 25. But in the third scenario (C) with the number of 

containers being 50, the optimal utilization was 130.19 when the cloudlets were 200. 
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4.3 Makespan 

Fig. 3 Resource Utilization Vs Number of Cloudlets 
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of cloudlets was 25. But in the third scenario (C) with the number of containers being 50, the 

optimal makespan was 830.01 when the cloudlets were 200. 
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4.2 SLA Violation 

Fig. 4 Makespan Vs Number of Cloudlets 

 

For the evaluation of SLA violation, we have executed the three scenarios and obtained the results 
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Fig. 5 SLA Violation Vs Number of Cloudlets 

 

The findings significantly showed that employing the ACO allocation algorithm achieves better 

performance, it optimally obtained 40.23 in terms of execution cost while the 41.21 resource 

utilization and 1749.86 makespan with a minimum of 0.002 SLA violation. ACO algorithm 

provides better quality and shows high performance with less execution cost, time, SLA violations, 

and space complexity. ACO can be suggested as a powerful optimization technique and sufficient 

for addressing the issues of resource scheduling in a cloud environment. 

5. Conclusion 

This paper implemented ACO multi-objective container resource scheduling in a cloud 

environment, the article aimed at analyzing the use of ACO for optimizing multi-objective such as 

the execution cost, resource utilization, makespan, and SLA violations. The experimental results 

showed that ACO has performed well. Optimally obtained 830.01 in terms of makespan while it 

got 75.61 for the resource utilization and 16.42 for the execution cost. In future work, we will 

compare ACO with other optimization based container resource scheduling and allocation in the 
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cloud from the state-of-art of meta-heuristic algorithms to identify the most efficient and reliable 

optimization algorithm for optimal resource scheduling in a cloud environment. 
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