Maximum Likelihood Estimation of the Latent Class Model through Model Boundary Decomposition

Main Article Content

Elizabeth S. Allman, Hector Banos, Robin Evans, Serkan Hosten, Kaie Kubjas, Daniel Lemke, John A. Rhodes, Piotr Zwiernik

Abstract

The Expectation-Maximization (EM) algorithm is routinely used for maximum likelihood estimation in latent class analysis. However, the EM algorithm comes with no global guarantees of reaching the global optimum. We study the geometry of the latent class model in order to understand the behavior of the maximum likelihood estimator. In particular, we characterize the boundary stratification of the binary latent class model with a binary hidden variable. For small models, such as for three binary observed variables, we show that this stratification allows exact computation of the maximum likelihood estimator. In this case we use simulations to study the maximum likelihood estimation attraction basins of the various strata and performance of the EM algorithm. Our theoretical study is complemented with a careful analysis of the EM fixed point ideal which provides an alternative method of studying the boundary stratification and maximizing the likelihood function. In particular, we compute the minimal primes of this ideal in the case of a binary latent class model with a binary or ternary hidden random variable.

Article Details

Section
Articles